• ベストアンサー

高校 物理 コンデンサー 静電エネルギー

高校物理の質問です Q=CVを積分すると 静電エネルギーU=1/2CV^2が出てくると言われ、高校範囲の微積分は分かるので納得できるのですが 位置エネルギーはU=QVですよね だとすると静電エネルギーは位置エネルギーの半分ですよね この違いはなぜ生じるのでしょうか 位置エネルギーを考えるときには 一様な電場を想定していて コンデンサーの時は電気量が電場に依存しているからでしょうか

質問者が選んだベストアンサー

  • ベストアンサー
  • BookerL
  • ベストアンサー率52% (599/1132)
回答No.1

> 位置エネルギーはU=QVですよね これは電位差Vが一定のときの話。コンデンサーの場合、電荷が溜まる前は電位差が0であり、電荷が溜まるに従って電位差が大きくなり、電荷がQだけ溜まったときの電位差がVとなります。従って単純なかけ算ではなく積分計算になります。 なお、コンデンサーの場合は電荷と電位差が比例するので、電位差の平均V/2(はじめ0で終わりがVなので、平均はV/2)を使って、位置エネルギー=電荷Q×平均の電位差V/2 としても同じ結果が得られます。

2015634789
質問者

お礼

ありがとうございました 皆さん回答していただいて大変助かりました

すると、全ての回答が全文表示されます。

その他の回答 (3)

  • bbgoogoo
  • ベストアンサー率37% (3/8)
回答No.4

付け足します。 g(r/(r+h))^2=g(r/(r+Z))^2 です。 h=Z なので高度の表記はお好きなほうに

すると、全ての回答が全文表示されます。
  • bbgoogoo
  • ベストアンサー率37% (3/8)
回答No.3

疑問のとおり、たしかに数式形式を比べれば本当は同じ形式の引力なので同じ関係になるべきです。 まずはイメージを作るために感覚的な理解をしましょう。  たとえば下敷きの静電気で頭髪を引き付けて遊びます。下敷きを頭から遠くかざしても逆立ちませんが、距離を寄せると急激に激しく逆立つ様子があります。引力Fが距離rに反比例ではなく、たぶん自乗に反比例。  ところで重力の加速とポテンシャルの場合はどうでしょう。  1階の部屋で電子秤の上に水を入れたコップを載せて重さを測ってみましょう。重さは地球から引力を受けたから表示されたのですね。  今度は2階の部屋で同じく測ってみましょう。重さは変わりましたか。同一値でしょう。1階から2階へと移動したので、高さhが増して異なるのにコップに入れた水の重さは同一値です。  したがって地球からの引力は1階でも2階でも同じだったのです。すなわち引力が距離に反比例でも自乗に反比例でもなく、gという一定値だったのです。 静電気とコップと引力の関数形がことなるので、違う結果になったのです。・・といいたいのですが、 違いの起きた原因は近似式、近似法のせいなのです。 今度は正確に厳密に辿りましょう。たとえば距離Rを隔てた引力は万有引力Fから F=mg=GMm/R^2 静電気にそっくり ここでRを地表とすると地表の重力加速度gは g=GM/R^2 Rを地球の半径rと空中の高度hから R=r+h とRをかき分けると 地表では h=0 R=r とした。 もう一度万有引力の式に戻って、地球上高度h>0の万有引力Fは F=GMm/(r+h)^2 =GM/r^2・r^2・m/(r+h)^2 =g'm すると上式g'とgより g'=g・r^2/(r+h)^2  =g(r/(r+h))^2 さらに、分母分子を地球半径rで割り算して g' = g (1 + Z/r)^(-2) ここで、高度Zが半径rにくらべて小さいとして、xの絶対値が1にくらべて小さい場合の近似式 (1 + x)^n = 1 + n x + ... を使うと g' = g ( 1 - 2 Z/r + ... ) この式より、高度が地球半径の1%増えると、重力が約2%減少するとわかります。これって地表面の建物1階と2階ほどの距離(高さh)ではほとんどg’は変化しないということです。 人工衛星ほどの高さになればg’は静電気と同じです。

2015634789
質問者

お礼

位置エネルギーにおいては重力も磁場も殆ど変わらないのですね

すると、全ての回答が全文表示されます。
  • oze4hN6x
  • ベストアンサー率65% (26/40)
回答No.2

ポイントはおさえることができているようですね。 参考URLに答えが載っているのでご覧ください。

参考URL:
http://www.wakariyasui.sakura.ne.jp/b2/61/6153seidennene.html
2015634789
質問者

お礼

ありがとうございました URL拝見しました いかにも積分という感じですね

すると、全ての回答が全文表示されます。

関連するQ&A