締切済み 微分の問題 2014/07/26 05:06 F(x)=e^-e^-x を微分したF’(x)はどうなるのでしょうか? みんなの回答 (2) 専門家の回答 みんなの回答 info222_ ベストアンサー率61% (1053/1707) 2014/07/26 10:40 回答No.2 F(x)=e^(-e^(-x)) F'(x)=(-e^(-x))' *e^(-e^(-x)) =-(e^(-x))' *e^(-e^(-x)) =-(-e^(-x))*e^(-e^(-x)) =e^(-x-e^(-x)) これ↑が(答)ですが さらに変形して =1/e^(x+e^(-x)) =1/e^((x(e^x)+1)/e^x) などとした(答)も考えられます。 質問者 お礼 2014/07/27 17:02 助かりました。ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Willyt ベストアンサー率25% (2858/11131) 2014/07/26 06:04 回答No.1 y=e^-e^-x・(e^-x) です。 z=e^-x と置けば y=e^-z になります。そこでy'=dy/dz・dz/dx を計算すればいいのです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分の問題 微分の問題で分からないところが出てきました。 f(x)=x/(log_[10](x))のとき、f'(√e)を求めよ、という問題です。 (log_[10](x)は底が10ということです) f(x)がf'(√e)になっているので解き方が全く分かりません。これってどういうことなのでしょうか? 解法を教えてください。よろしくお願いします。 「微分可能性を調べよ」という問題です f(x)=0 (x<=0) e^(-1/X) (X>0) の微分可能性を調べる問題なんですが、答えが「全ての点で微分可能」となってます。 lim(h→0) {f(h)-f(0)}/(h-0) =lim(h→0) e^(-1/h)/h =lim(h→0) 1/{e^(1/h)・h} とやってみたんですが。どうすればいいですか? 微分可能性について 微分可能な関数f(x)がf‘(x)=|e^x-1|を満たし、f(1)=eであるとき、f(x)を求めよ。 x≧0のとき、(xは全ての実数について微分可能なので、こうしました) f`(x)=e^x-1よって、f(x)=∫(e^x-1)dx=e^x-x+C f(1)=eより、e=e-1+Cよって、C=1。f(x)=e^x-x+1 x≦0のとき、f‘(x)=-e^x+1 f(x)=∫(-e^x+1)=-e^x+X+D f(x)はx=0で微分可能だから、x=0で連続であり、 lim(x→+0)(e^x-x+1)=2=f(0) lim(x→ー0)(-e^x+x+D)=-1+D=2よって、D=3 よって、f(x)=e^x-x+1(x≧0)、-e^x+X+3(x≦0) という答案を書きました。 一方、問題集の答えでは、x=0では導関数は定義されないことからx>0、x<0と場合分けしています。 しかし、全ての実数で微分可能な事がわかっている以上、x≧0、x≦0と場合分けしてはいけないのでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分の問題が分かりません。 微分の問題が分かりません。 見ていただきありがとうございます。 こちらの問題が分かりません… f(x)=log(x+√(1+x^2))を3回微分せよ。 f´x= f´´x= f´´x´= logxの微分は1/xということは分かります。 多分f´(x)=[1/{x+√(1+x^2)}]×(x+√(1+x^2))´だと思うんですが、 (x+√(1+x^2)の微分の仕組みが分かりません。 どなたか解き方、答えが分かるかた回答よろしくお願いします。 eの微分の公式について e^xの微分はe^xですが e^f(x)の微分はf'(x)e^f(x)でいいのでしょうか? ネットで調べたのですが、e^xの微分の公式の説明ばかりだったので教えてください 偏微分の問題です。 偏微分の問題です。 f(x):R上微分可能な関数 f(y/x)について f_x(y/x)=f_y(y/x)は成り立ちますか? よろしくお願いします。 微分 問題 微分 問題 (x^2-1)/(3x^2+1)を微分せよという問題なのですが、合っているか教えて頂けませんか? 商の微分より (x^2-1)=f(x) (3x^2+1)=g(x) から、(f(x)/g(x))’=(f’(x)・g(x)-f(x)・g’(x))/(g(x))^2 =(2x(3x^2+1)-6(x^2-1))/(3x^2+1)^2 以上、よろしくお願い致します。 微分の相違? f(x)=e^√(x) (x>0) の関数を微分します。 f'(x)=e^√(x)*(1/2√2)=e^√(x)/2√2 となります。 ここで、f(x)を対数微分法で微分してみたのですが、 両辺の自然対数をとって、 log(f(x))=√(x)loge=√(x) 両辺をxについて微分すると、 f'(x)/f(x)=√(x) f'(x)=√(x)*e^√(x) となり、前者の答えと異なってしまいます。 恐らく前者の答えが正解で、後者はミスを犯しているのだと思います。 どの点が問題か指摘をお願いします。 微分の問題 数学の問題がわかりません。 だれかアドバイスお願いします。 問1 次の極限値を求めよ。 (1) lim[x→π/2](1-(sinx)^3)/(1-sinx) 問2 次の片側極限値を求めよ。 (2) lim[x→-0]x/|x| (3) lim[x→-1+0]x/(x+1) 問3 次の極限値を求めよ (4) lim[h→0](1-e^(ah))/(h+ah^2) (a≠0) (5) lim[x→0]e^x-e^(-x)/x 問4 (6) 3次方程式 f(x)=x^3+ax^2+bx+c=0は少なくとも1つの実数解をもつことを証明せよ。 問5 次の関数はx=0で微分可能であるか? (7) f(x)=|x(x-2)| (8) f(x)=|x^3| 問6 次の関数のx=1における微分係数を定義に従って求めよ。 (9) y=x^2+2 問7 次の導関数を定義に従って求めよ。 (10) y=x^2+2 わかる範囲での自分の考え (1) x-π/2=tとおいてこの問いを解く (9)と(10) f'=(f(x+h)-f(x))/hの方法で解く。この2題は考え方が同じになってしまうのですが、これでいいのでしょか? あとは、よくわかりません。 わかる方、教えてください。 お願いいたします。 微分の問題なのですが f(x)=x^4-4x+15 がすべての実数xに対してf(x)>0であることを示せという問題なのですが、 微分の単元の問題なので微分すると思うのですが、 f´(x)=4x^3-4とした後がわかりません。 ヒントでもよいので、わかるかた教えて下さい。 お願いしますm(__)m 教えてください!偏微分の問題です。 教えてください!偏微分の問題です。 f(x,y)=(1/√y) e^(-x^2/4y) に対してfxx-fyを求めよ。 f(x,y)=log(x^2+y^2)に対してfxx+fyyを求めよ。 u(x,y)=1/2 √(π/t) e^(-x^2/t) に対してu_t-1/4 u_xx を計算せよ。 という問題なのですが、 1つめは(1/√y)e^(-2/4y)+(1/√y^3)e^(-x^2/y) 2つめは{(x+y)-4}/(x^2+y^2) と一応答えが出したのですが、 答えがなく確認することが出来ません。 よろしくお願いします。 微分の問題です 微分について x^-2とは、1/x^2のことでしょうか? また、x^2e^-x 2x^-3logx の二つを微分た計算式の途中過程を教えてください。 解答は前者=(-x^2+2x)e^-x 後者=2/x^4(1-2logx)です。お願いします 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分 微分について質問です。 f(x)は x≠0のときe^(-1/x^2) x=0のとき0 [問]f’(0)とf’’(0)を求めよ という問題がわかりません!どなたか解説お願いします! 微分の問題 微分教えて下さい。e^axやa^xに変形してから公式を使って微分せよという問題です。 (1)y=1/e^3x (2)y=1/√(e^6x)の3乗根 (3)y=e^3x√(e^5x) (4) y=e^x/√(e^3x) (5)y=1/(e^2x√e^x) (6)y=1/(2^5x) (7)y=3x/√(3^x) です。 途中式もお願いします! 微分の問題 微分の問題 次の問題で困っています。 g(1)=4,g’(1)=2,g’’(1)=-3であり、f(4)=4,f’(4)=-1,f’’(4)=5とする。 このとき、合成関数(f○g)(x)のx=1での一階の微分係数および、2階の微分係数を求めよ。 数学が得意な方、ご解答お願いします。 数III 微分 f(x)=2e^2×x(x+1) の微分が f'(x)=2e^2×(2x+1) になる理由を教えてください! 全微分の問題が解けなくて困っています 全微分の問題です。解けなくて困っています。 f(x,y)=|xy|について次を証明せよ (1)xyが0でないとき、fx(0,y),fy(x,0)はいずれも存在しない。 (2)点(0,0)での偏微分係数はいずれも存在し、f(x,y)は(0,0)で全微分可能である。 よろしくお願いしますm(--)m 微分について 微分の計算をしたのですが、あっているかどうか添削してください f(x) = 5x^4 f'(x) = 20x^3 f(x)=3e^4x f'(x) = 12e^4x f(x)=sin(tan x) f'(x)=cos(tan x) / cos x これであっていますか? 微分について教えてください (1)y=log(10)XのX=1における微分係数 (2)y=e^XのX=0における微分係数 を求める計算です。 それぞれf'(X)=lim<h→0> {f(X+h)-f(X)}/h を使って計算過程も示さなければならないのですが それぞれ代入してみても答えにうまくたどりつけません。 どのように解いていったらいいのでしょうか? どなたか解説よろしくお願いします。 微分の問題です。 微分の問題です。 y = f(x)をx について微分する場合、次の問はどのようになるのでしょうか? 過程も教えていただけるとありがたいです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
助かりました。ありがとうございます。