- 締切済み
微分の問題
F(x)=e^-e^-x を微分したF’(x)はどうなるのでしょうか?
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- info222_
- ベストアンサー率61% (1053/1707)
回答No.2
F(x)=e^(-e^(-x)) F'(x)=(-e^(-x))' *e^(-e^(-x)) =-(e^(-x))' *e^(-e^(-x)) =-(-e^(-x))*e^(-e^(-x)) =e^(-x-e^(-x)) これ↑が(答)ですが さらに変形して =1/e^(x+e^(-x)) =1/e^((x(e^x)+1)/e^x) などとした(答)も考えられます。
- Willyt
- ベストアンサー率25% (2858/11131)
回答No.1
y=e^-e^-x・(e^-x) です。 z=e^-x と置けば y=e^-z になります。そこでy'=dy/dz・dz/dx を計算すればいいのです。
お礼
助かりました。ありがとうございます。