フントの規則における全軌道角運動量量子数
n個の電子のそれぞれの軌道角運動量ベクトルをl1,l2•••••lnで表すと、全軌道角運動量ベクトルはL=l1+l2+••••••lnと表すことができる。
ここで全軌道角運動量ベクトルの量子数をL'とすると、ベクトルの大きさは√{L'(L'+1)}と量子化され、ベクトルが取りうる向きも、L'_(z)=L',L'-1, L'-2••••
-(L'-1), -L'と量子化される。
同じように、n個の電子の全スピン角運動量ベクトルをS=s1+s2+•••••••sn、全スピン量子数をS'=s1+s2+••••snと表すと、ベクトルの取り得る向きはS'_(z)=S', S'-1,S'-2••••-(S'-1), -S'と表す事ができる。
Co原子は3d軌道に7個の電子がある。
これらの電子は、フントの規則によって写真のように配置される。従って、全スピン量子数S'は(3/2), 多重度2S'+1=4, 全軌道角運動量量子数L'は3となる。
*質問ですがなぜ、この場合、全軌道角運動量量子数が3になるのかを教えてください。
お礼
ありがとうございました。