ベストアンサー 行列 2014/02/02 20:04 以下、X,A、Bは行列を表します。 XA=BについてX、A,Bが正則であり、かつ、Bが階段行列ならば、Bは単位行列になるというのはあっていますか? 合っているならば、理由もおしえてください。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー anisakis ベストアンサー率43% (16/37) 2014/02/02 21:20 回答No.1 Bが単位行列に「なる」ってどういうことですか Bは階段行列だって書いてあるんですけど 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 正則行列 行列Aが与えられたとして、Aにある行基本変形を施して、A1になったとする。次に、この行基本変形に対応する基本行列をX1とする。つぎにこのA1に行基本変形を施して、A2になったとする。 この行基本変形に対応する行列をX2とする。X2A1=X2X1A=A2である。 このような行基本変形をn回繰り返した結果得られた行列が、An=Bとなったとすると、 B=An=XnAn-1=XnXn-1An-2=、、、=Xn、、、X1A となる。そこでXn、、、X1=Xと置くと、XA=Bとなる。もし、階段行列Bが単位行列ならば、Aは正則となり、XはAの逆行列となる。 (ここからがわかりません) 逆に、Aが正則ならば、どの行ベクトルも、零ベクトルではない。これは、Bが単位行列となることを意味する。 とあるのですが、A=正則、Xは基本行列の積だから、X=正則ですが、XA=BのBについてなぜ単位行列となるのでしょうか? 行列式について |AB| |CD|(行列式) があって小行列Aが正則、小行列Bが0、小行列Cが0 そして小行列Dは単位行列とすると |AB| |CD| この行列式は0でないのはなぜでしょうか? *行列式の縦棒がわかりにくいですがつながってると思ってください |AB| |CD| =|A|X|D|=|A|となり Aが正則だから0でないらしいですが |AB| |CD| =|A|X|D|となることがわかりません わかる人いたらどうかお願いします。 右逆行列の存在証明 線形代数で行列の「正則」で悩んでいます。 手持ちの線形代数の本ではどの本も 「正則」の「定義」が 正方行列 A に対して XA = AX = E(単位行列) となる X が存在する場合 A は「正則」である。 と定義し、これを出発点として様々な定義を導いています。 これはこれでよいのですが、しかし、よく考えてみると 1) XA=E が存在する場合 A は正則とする(左逆行列による正則の定義) 2) XA=E が存在する場合AX'=E が存在する(右逆行列の存在定理) 3) X = X' (左逆行列 と 右逆行列の同一性の定理) というように、定義は基本的な定義と2個の定理に 分解できるような気がします。 定理なら証明が必要と思い、いろいろ考えてみたのですが、 1),かつ2) ⇒ 3) は XAX' = X = X' なので簡単なのですが、 2) をどうしても証明できません。 そもそもこのような定義から出発するのは間違っているのでしょうか? また、2)の証明が載っている参考書はありませんでしょうか? 以上よろしくお願い致します。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム n次正方行列Aが正則であることの定義を述べよ。 n次正方行列Aが正則であることの定義を述べよ。 (逆行列を用いて定義するときは、その定義も述べよ。) という問題があるのですが回答は n次正方行列Aに対して AX=XA=En(n次単位行列) をみたすn次正方行列XがあるときAは正則であるといい、 このときの行列XをA-1(Aインバース)と表して 「Aインバース」と読みAの逆行列という。 これで合ってますか? あと n次正方行列Aが等式A^3+A-E=0を満たすとき、 Aは正則であることを示せ。 またA-1をAおよびEを用いて表せ。 この問題が分かりません。 どなたか宜しくお願いします。 行列の質問です。 n×mの行列Aとm×n行列Bについて、In+ABが正則のとき以下を証明せよ.。(Inはn×nの単位行列) (1) (In+AB)^-1A=A(Im+BA)^-1 (2) (In+AB)^-1=In-A(Im+BA)^-1B Im+BAは正則であることもわかりませんでした。 よろしくお願いします。 行列の問題です。 行列の問題です。 A,B:n×n行列 x:n×1行列 任意のxに対して、 (A+B)xとxの内積が0以上ならA+Bは正則と言えるのですか? よろしくお願いします。 行列の証明問題 行列について質問です。 A+A^2+A^3+…=(I-A)^-1 になるらしいのですが,どうしてこうなるのか理解できません。 Xは正則行列でIは単位行列です。 べき零行列について Aをべき零行列、Eを単位行列とするとき E-A は正則行列であることを示せ 上のような問題があったんですが、どうすれば良いのかよくわかりません。 正則であることを示すために、E-Aの逆行列を計算しようとしたのですが 逆行列がどんな形になるのかもよくわかりません。 どなたか、よろしくお願いします。 正則行列の証明問題 問題は「Aがm次正則行列、Dがn次正則行列ならばに二のm×n行列Cに対し次の行列X,Y,Zは正則であることを示せ。またX^-1,Y^-1,Z^-1を求めよ。 X= |A B| |0 D| Y= |A 0| |C D| Z= |B A| |D 0| 」 です。 証明は逆行列を求めて正則行列でないB、Cの逆行列が関与していないことを示すだけでいいですか? 解答がないんで確かめようがなくて困ってます。 よろしくおねがいします。 行列の問題です はじめまして 数学の、行列の問題で、どうしてもうまくいかない問題があるので教えてください。 問題は、 Aがどんな行列であっても、AX=XAなら、必ずX=αA+βE とかけるか? (Eは単位行列のことです) です。 おねがいします。 正則な行列によってできる行列は正則か? 正則である行列A,Bがあるとします. この時,この行列のみの積を用いて行列を作った場合(例えばAB^-1Aなど),その行列は必ず正則であると言えるのでしょうか? もしくは,演算後の行列が正則であるかどうかは別問題であるのでしょうか? 反例や証明等があれば教えていただきたいです. よろしくお願いします. 逆行列と単位行列 ある n 次正方行列 A に対し適当な n 次正方行列 X との積を計算したら、たまたま AX = E(E は単位行列) になったとします。これからただちに XA = E と結論していいのでしょうか? つまり AX = E ⇒ XA = E は常に成り立つのでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 行列 Aをn×n行列とする。もしAの固有値が全て絶対値が1より小さいなら、E-Aは正則行列(Eは単位行列)になる、というのはどのように証明したらいいですか? お願いします。 行列について テスト勉強で解けない問題がありました。 (1) Aを2*2の行列とする。 (a)すべての2*2行列Xに対して (b)AはKEという形でないとする、このとき AX=XA AX=XA が成立するなら となる2*2行列Xは A=KE X=pA+qE (p,q:数) であることを示せ。 であることを示せ。 (2)Aを2*2行列とするとき、A^nの 求め方を論ぜよ。 途中式も含めて教えてください(-_-;) よろしくお願いします。 線形代数について 線形代数の質問です。 次の変形定理を用いて以下ののことを証明せよ。 任意の行列A≠Oは適当な行基本変形を何回か行うことにより、必ず階段行列Bに変換できる。このとき、Bはある正則行列Pを用いて B=PA と表せる。 問.Aを正方行列とするときAX=IとXA=Iは同値であることを証明せよ。ただしIは単位行列。 大学の課題で出されたのですが、授業ではまだやっていないので教科書をよんでもイマイチわかりません。なにかヒントとかで良いんでどなたか教えていただけませんか? この質問に補足する 線形代数[行列]の証明問題 線形代数[行列]の証明問題の解答を教えて下さい。 ※以下、Oは零行列、Eは単位行列を表す 1.Aが正則な対称行列であれば、Aインバース(Aの逆行列)も対称行列になることを示せ。 2.Aの3乗=Oのとき、E+A、E-Aはともに正則行列になることを示せ。 行列(ベクトル)で括る 行列の演算規則がわからないので質問します。不動点を求める問題で、Aを1次変換、Eを2次の単位行列とし、A→x=E→xを(A-E)→x=→O・・・(1)としているのが疑問です。 自分は、行列の積については交換法則が成り立たないので、不用意に文字式のように変形を行わないようにという注意書きや、 (A+B)(A-B)=A^2-(AB-BA)-B^2≠A^2-B^2などの例を見て、行列を因数分解できないときがあるという考えになりました。ただ、1つの正方行列Aの累乗と単位行列Eだけの式は普通の整式のように計算できる。との記述もあり頭が混乱しています。(1)が変形できるのは、行列の積は移項でき、分配法則も成り立つからでよいでしょうか?どなたか(1)が因数分解のように変形できる理由を教えてください。お願いします。 行列A= 行列A= 2 -1 0 1 2 1 0 -1 2 のとき、AX=XA(可換)が成立する行列Aを求めよ。 この解は X= a b c -b a+c -b c b a a,b,cは0でない任意実数とする。 これは正しいですか? 教えてください!! 行列の証明 A,Xは2次の正方行列 A=|a b|,X=|1 2| |c d| |-2 1| a+d≠0のとき A^2=X^2 ならば AX=XAを示したいのですが、 ヒント(方針)だけください。 n次正方行列Aに関して次の[1]~[5]はすべて同値であることを証明せよ。 n次正方行列Aに関して次の[1]~[5]はすべて同値であることを証明せよ。 [1] Aは正則 [2] |A|≠0 [3] rank A = n [4] Aのn個の列ベクトルは1次独立。 [5] AB = Eを満たすn次正方行列Bが存在する。 [1]→[2] Aが正則であるから、Aには逆行列が存在し、AA^-1=Eとなる。 |AA^-1|=|E|より、|A||A^-1|=1≠0となり、|A|≠0であることがわかる。 ∴ Aが正則ならば|A|≠0である。 [2]→[3] P、Qを正則行列として、 PAQ=(Er 0 0 0) としたとき Aがn次正方行列なので、P、Q および右辺の行列もn次の正方行列である。 |A|≠0より|PAQ|≠0で(Er 0 0 0)≠0となり、r=nなり、rankA=nが言える。 ∴ |A|≠0ならば、rankA=nである。 [3]→[4] Aがn次正方行列でrankA=nより、 Aに基本変形を行い階段行列を作っていくと、最終的にn行n列の単位行列にできる。 よって、単位行列のn個の各列ベクトルは、単位基底であるので1次独立である。 ∴ rankA=nならば、Aのn個の列ベクトルは1次独立である。 [4]→[5] Aの列ベクトルをa1、a2、・・・、 anとする。 また、x1、x2、・・・・・、xnをスカラーとして、x1a1+x2a2+・・・・+xnan=0・・・(1)とする。 a1、a2、・・・・、anが1次独立であるので、(1)式中のxi(i=1、2、・・・n)はすべて0となる。 このとき|A|=0であると、xiが自明な解以外の解を持ってしまうので |A|≠0である必要がある。|A|≠0であれば、A^-1が存在し、AA^-1=Eとなる。 このとき、A^-1=Bとすれば、AB=Eとなる。 ∴ Aのn個の列ベクトルが1次独立ならば、AB=Eを満たすn次正方行列Bが存在する。 [5]→[1] AB=Eより、|A||B|=1 つまり|B|≠0。このことよりBC=Eとなる行列Cが存在する。 C=EC=(AB)C=A(BC)=AE=A。 ここで、BA=Eであることがわかる。 AB=EのBとBA=EのBが同じであり、Aに対して、Bが1つしか存在しない。 よって、BがAの逆行列であることがわかる。 Aに逆行列が存在するということは、Aは正則である。 ∴ AB=Eを満たすn次正方行列が存在すれば、Aは正則である。 上記のように解いたのですが、証明できていますでしょうか? アドバイスお願い致します。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など