- 締切済み
Mapleでsimplifyコマンドが効きません
宜しくお願い致します。 ユニタリ行列の固有値は実数ですよね。 A:= 100,-1+3*I,1 -1-3*I,50,3-I 1,3+I,10 というユニタリ行列の固有値をMapleで求めたら本来実数値になる筈が下記のようになぜか複素数表示されてしまいました。 どうすればキチンと実数値に表す事ができるのでしょうか? With(LinearAlgebra); にてEigenvalues(A)というコマンドを使ってます。Maple11 simplify(Eigenvalues(A))としても虚数Iがなくなりません。 (1/3)*(90595+(3*I)*sqrt(25097679858))^(1/3)+6163/(3*(90595+(3*I)*sqrt(25097679858))^(1/3))+160/3 -(1/6)*(90595+(3*I)*sqrt(25097679858))^(1/3)-6163/(6*(90595+(3*I)*sqrt(25097679858))^(1/3))+160/3+(1/2*I)*sqrt(3)*((1/3)*(90595+(3*I)*sqrt(25097679858))^(1/3)-6163/(3*(90595+(3*I)*sqrt(25097679858))^(1/3))) -(1/6)*(90595+(3*I)*sqrt(25097679858))^(1/3)-6163/(6*(90595+(3*I)*sqrt(25097679858))^(1/3))+160/3-(1/2*I)*sqrt(3)*((1/3)*(90595+(3*I)*sqrt(25097679858))^(1/3)-6163/(3*(90595+(3*I)*sqrt(25097679858))^(1/3)))
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- siegmund
- ベストアンサー率64% (701/1090)
問題解決になっていませんが, 重大な誤解をされているようなので・・・ ユニタリとエルミートを取り違えておられます. 質問文中の「ユニタリ」はすべて「エルミート」に直さないといけません. なお,ユニタリ行列の固有値は一般に複素数で(もちろん,実数の場合もある) 絶対値は必ず1です. 私は Maple 持っていないのでMathematica (大分古いバージョン)でやってみましたが 結果は同様ですね. http://www.wolframalpha.com/ でやってみても同じです. もちろん,実数値表現にすると虚数部は事実上ゼロです. ひぇ~,三重根の二重根号で中に複素数ですか. う~ん,カルダノの公式は実根でも複素数を経由しますからね.
お礼
有難うございます。 参考になってます。