ベストアンサー 公式が使えない!?微分方程式の解法 2013/12/17 23:02 一般解を求めよ。 yy''-(y')^2-2y^2=0 どなたか解法を教えて下さい。 一般的な公式を用いるような問題は解けますが、 これについては私では歯が立ちません。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー spring135 ベストアンサー率44% (1487/3332) 2013/12/18 00:02 回答No.2 yy''-(y')^2-2y^2=0 (1) これはyが多すぎる。yを減らすためにy^2で割る。 y''/y-(y'/y)^2-2=0 (2) どう見てもy'/yがキ-ターム。 u=y'/y とおく。 u'=(y''y-y'^2)/y^2 従って(2)の定数項以外を網羅。 つまり(2)は u'=2 u=2x+c y'/y=2x+c log(y)=x^2+cx+d y=a*e^(x^2+cx+d) 質問者 お礼 2013/12/22 05:11 ご丁寧に解答をして頂いてありがとうございます。 とても助かりました。 y^2で割って、更に一部を取出し微分する…このひらめきは勘と勉強量に頼るしかなさそうですね・・・。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) shuu_01 ベストアンサー率55% (759/1365) 2013/12/17 23:17 回答No.1 Yahoo! 知恵袋に同じ質問ありました http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243554997 質問者 お礼 2013/12/22 05:08 ありがとうございました。大変助かりました。 しっかり検索すれば良かったです…。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A リカティの微分方程式の解法について。 例えば 【dy/dx + y^2 + 3y - 4 = 0】 という式があったときに、特殊解が1なので、一般解を y = 1 + u とおく、という解法になると思うのですが、なぜ y = 特殊解 + u とおけるのでしょうか? 一般解のたくさんのxの中に特殊解となるxがたくさん存在する、というイメージなのですが、それをどうして 特殊解 + u という形におけるのか(y = uの中に特殊解があるならイメージと同じになるのですが)がよく分かりません。 よろしくお願いします。 微分方程式の解法を教えてください! 常微分方程式の解法はどんなものがあり、どのような場合に適用すれば解けるでしょうか。 解法を覚えても、それが適用される場合についての判断ができません。教えてください! 以下の場合だとどのように解けばよいでしょうか。 (1)d^2x/dt^2+ω^2x=0の一般解の求め方。(ωは定数) (2)dx/dt=-c^2y、 dy/dt=c^2x の一般解の求め方。(cは定数) (3)dx/dt=u、 du/dt=-kx-cu+f(t) (k,cは定数) のとき (1)f(t)=0のとき、t=0でx=x0のもとでの解を求め る。 (2)f(t)=cosωtのときの解。 微分方程式の解法について・・・ 一次微分方程式では「y=ux」とおき、一般解などを求めていくものが多いように感じられるのですが、 以下のような問題を解くためにはどのように進めていけばいいのでしょうか? 以下の微分方程式の一般解を求めよ。また、u = 2y^2-6yとおくこと。 dy/dx = -(2y^2-6y+4)/x(2y-3) 自分なりに du/dx = du/dy * dy/dx = ~ とし一般解を求めようと努力したのですが、どうしても途中で詰まってしまいます。 どなたか、お力をお貸しください。 また、最後に見難い記述しか出来ないことと、一方的な要望となってしまっていることをお詫び申し上げます 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分方程式の解法について・・・・ 一次微分方程式では「y=ux」とおき、一般解などを求めていくものが多いように感じられるのですが、 以下のような問題を解くためにはどのように進めていけばいいのでしょうか? 以下の微分方程式の一般解を求めよ。また、u = 2y^2-6yとおくこと。 dy/dx = -(2y^2-6y+4)/x(2y-3) 自分なりに du/dx = du/dy * dy/dx = ~ とし一般解を求めようと努力したのですが、どうしても途中で詰まってしまいます。 どなたか、お力をお貸しください。 また、最後に見難い記述しか出来ないことと、一方的な要望となってしまっていることをお詫び申し上げます 微分方程式の解法 微分方程式の問題なのですが 3y^2dx+xdy=0 , y(1)=1/2 この時の特殊解を求めなければならないのですが、初めに完全微分方程式でないことを言った後にどのようにして一般解、特殊解を求めればいいのでしょうか。 参考書に例示されている例題に似たパターンの問題がなく完全に詰まってしまいました。 どうかご回答よろしくお願いします。 3次・4次方程式の解の公式 一般3次方程式と4次方程式の解の公式を教えてください。解の公式が出ているサイトのURLでも結構です。 ただし、カルダノの解法など、解法を尋ねているのではありません。あくまで最終的な解の公式を見たいのです。 おそらくかなり巨大なものになるらしく、教科書などには出ていません。それを見てみたいわけです。 よろしくお願いいたします。 非線形常微分方程式 以下の非線形の常微分方程式を考えています。 yはxに関する関数 y-xy'-2(y')^2-2yy"=0 あらゆる方法を試しましたが解が出ません・・・。 何かひらめきが必要な気がします。 ちなみに、これは非線形ですが、解が存在する問題です。 どなたか解法をよろしくお願い致します。 微分方程式の問題です。 微分方程式の問題です。 微分方程式の問題で、 (d^2y)/(dx^2)+(tanx)*{(dy)/(dx)}+(cos^2x)*y=0 の一般解を求めよという問題なのですが、解き方が分からず困っています>< 解法が分かる方がいれば、解法を教えていただけないでしょうか? よろしくお願いします!! 非同次微分方程式(記号解法) こんばんは! 記号解法が分かりません><分かる方お願いします>< (D^2+9)y=cos3x の一般解を求めよ という問題なのですが、特殊解が合いません。 わたしの解答は 特殊解: 1/f(D)cos3x=x^2sin3x/6 一般解: y=C1cos3x+(C2+x^2/6)sin3x なのですが、答えは 一般解: y=C1cos3x+(C2+x/6)sin3x でした。 どこでxの2乗が1乗になったのかがわかりません。 あと、(D^2-6D+10)y=5x^2-x+3 の場合はどうやって解くのでしょうか^^; 各項を分けて計算し足し合わせるのは分かるのですが、右辺にeが出ていない場合の解き方がわかりません。 eが0乗であると考えて 1/f(D)*5x^2=5*1/D^2-6D+10*x^2 としても1/100等が出てきて答えに合いませんでした。 よろしくおねがいします>< 微分方程式 微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。 非線形常微分方程式 以下の非線形の常微分方程式を考えています。 yはxに関する関数 y-xy'-2(y')^2-2yy"=0 あらゆる方法を試しましたが解が出ません・・・。 何かひらめきが必要な気がします。 どなたか解法をよろしくお願い致します。 線形微分方程式です y'+P(x)y=Q(x) ・・・ (1) の一般解を求めるのに、特殊な場合 Q(x)=0 のとき、 y'+p(x)y=0 ・・・(2) の一般解から一般の場合の(1)の一般解を求めるという考えで(1)の解の公式を導け。 解き方がさっぱり解りません。解る方がいたら宜しくおねがいします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 1階非同次線形微分方程式の解法について 難しすぎてよくわからないので質問します。 いろんなサイトを見てもよくわからなかったので分かりやすい回答おねがいします。 みなさんから見れば、なぜこんなことも分からないの、なにを言っているの?と思うのかもしれませんが、丁寧に解説してくれるとありがたいです。 非同次方程式の一般解=同次方程式の一般解+非同次方程式の特殊解となるようですが、 なぜこれが成り立つのかわかりません。 いろんなサイトみたのですが、数式がいっぱい書いてあってなにがなんだかわからない状態です。 まだ、変数分離の解法しかやっていないので、難しいことを言われても分からなくなってしまいます。 まず、1階線形微分方程式は、dy/dx+f(x)y=g(x)などのように表されるということは分かりました。 そしてこのg(x)を0としたものが非同次となるわけですよね。 つまり、dy/dx+f(x)=0です。 そしてこの解法として、まずy=u(x)が同次方程式の一般解としようと書いてあります。 ですが、もうこの時点でよくわからないです。 なぜ一般解としようと考えたのかってとこに疑問があります。 特殊解でもなく、なぜ一般解なのかということです。 そして、これを代入すると、du(x)/dx+f(x)u(x)=0となるのはわかります。 ただ代入するだけなので。 次に、y=v(x)を非同次方程式の特殊解としようと書いてあります。 でもなぜ非同次方程式の特殊解にするのかわかりません。 同次方程式の特殊解と考えてはだめなのかと思ってしまします。 まさか適当においたとも思えませんし。 なにかの考えがあってのことだと思いますし。 ようするに、なぜこのようにおいたのか、道筋というか目的ってのがよく見えないのです。 いったいなにをやっているのか。 たぶん一般解と特殊解の関係?みたいなのがわかっていないので、悩んでいるような気がします。 つまり、 非同次方程式の一般解=同次方程式の一般解+同次方程式の特殊解とおくことはできないのかと。 質問の意味あまりわからないかもしれませんが、すいません。 わからなすぎて、なにが分からないのかもわからない状態で。 丁寧に解説してくれるとありがたいです。 1階常微分方程式で。。。 最近独学で微分方程式を勉強していたんですけど、 1階常微分方程式の辺りで躓いてしまいました。。。 わからない問題は死ぬほどあるんですけど、 この三問の解法を教えてください<(_ _)> 他は…もう少し頑張ってみます頑張ってみます。 1)一般解を求めよ:y´=(x-1)y^2 2)次の初期値問題を解け:y´=2xy(1+y),y(0)=-1/2 3)一般解を求めよ:y´=(x+y)/(x-y) 微分方程式について y''-2y'+y=e^xについて 1 y=(e^x)vと置くとき、v=v(x)を満たす微分方程式を求めよ 2 1で求めたvに対する微分方程式の一般解、およびyの一般解を求めよ という問題が出されたんですが、どの本を見ても「一般解をもとめよ」 「特殊解を求めよ」という問題ばかりで、上記の問題の解き方が全く分かりません。よろしければご指導よろしくお願いします。 微分方程式の解法について… X^2(y")+(y')^2=0 初期条件がX=1において、y=0,y'=1 この問題の解法に苦戦しております。 解析学の基礎レベルなのかもしれませんが、限りなく初心者に近いためシビアです。初期条件を用いるとまずそれぞれ値を代入してy"+1=0を解けばよいのでしょうが(?)、先に進みません。参考にさせていただきたいので是非とも教えていただきたいです。 微分方程式の一般解の求め方が分からないので教えてください。 微分方程式の一般解の求め方が分からないので教えてください。 1.(1+x^2)y´+2x(1+y)=0 2.2yy´+logx+1=0 3.2x+y+(x-2y)y´=0 微分方程式の解で、この方針であっているか 微分方程式の問題です。 (x^2)y’ - y^2 =(x^2)yy’ この問題で、私は y’={(y^2)/(1-y)} * {1/(x^2)} と変形して、 ∫(1/g(y))dy = ∫f(x)dx + C の変数分離形の公式に当てはめたのですが、解がとても複雑になりすぎててちょっと不安です。 回答が乗っていないもので、答えがあっているかどうかわからないので 方針だけでも合っているかを教えていただきたいと思います。 数式の書き方が下手くそでわかりずらいかもしれません・・・。 よろしくお願いします。 微分方程式が分かりません。 すみません。以下の3つの微分方程式の解法が分かりません。 下の2問は一般解を求める問題です。 すみません。困っておりますので、よろしくお願いいたします。 微分方程式の解 微分方程式の解に一般解と特異解があると思うのですが、特異解の条件って言うのは自分で勝手に決めるものなのですか?「y=0のとき」とか勝手に決めてるみたいなのですが。 それと一般解は一般的に何か求める公式が存在するのでしょうか。微分や積分を使って普通に求められるものはいいのですが、問題によってはいきなり指数関数になったりして意味不明です。 なぜ、一般解と特異解を足したものが解なのでしょう? ぜんぜん、分かりません。何を聞いていいのか分かりません。 こんな質問で申し訳ないのですが、ご回答お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ご丁寧に解答をして頂いてありがとうございます。 とても助かりました。 y^2で割って、更に一部を取出し微分する…このひらめきは勘と勉強量に頼るしかなさそうですね・・・。