締切済み お願いします 2013/08/04 21:41 3次正方行列Aについて、(A|E)を行基本変形して(E|B)とできるときにB=Aの逆行列であることを示せ。(Eは単位行列) この問題の解答教えてください お願いします みんなの回答 (1) 専門家の回答 みんなの回答 alice_44 ベストアンサー率44% (2109/4759) 2013/08/04 23:43 回答No.1 行基本変形は、基本変形行列を左から掛けることで表現できます。 また、一般に、行列を左から掛けることは、変換を受ける行列の 各列に、並列に作用します。 従って、A|E に行基本変形 P1, P2, P3, …, Pn を この順に施して、E|B に変形されたとすれば、 Pn … P3 P2 P1 A = E, Pn … P3 P2 P1 E = B です。 B A = E ですから、B が A の逆行列と解ります。 質問者 お礼 2013/08/06 02:05 ありがとうございます。理解できました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数C行列にて。 数C行列にて。 Q. 2次の正方行列A,Bがあり、 条件、AB = A + B を満たしているとする。 (1)A - E の逆行列をBと単位行列 E で表せ。 という問題があり、解答には、AB = A + Bを式変形していき、 A(B - E) - (B - E) - E = 0 となっていて、 (A - E)(B - E) = E となっていました。 ですが、(A - E)(B - E) = Eの意味がいまいちつかめません。 A(B - E) - (B - E) - E = 0をどう変形したらこうなるのでしょうか。 すいませんが、ご教授ください。 お願いします。 この問題を教えてください。 この問題を教えてください。 問題は A,Bは二次の正方行列でありAB=A+Bを満たす。また、Eは二次の単位行列である。 このとき、A-Eは逆行列をもつことを示せ。 です。 行列の問題です! AをA^2=A-Eをみたす2次の正方行列としαを実数とする。このとき、次の問いに答えよ。ただし、Eは2次の単位行列である。 (1)行列Aの逆行列A^-1をAとEを用いて表せ。 (2)任意の2次正方行列Bに対して(B+αE)(B-pE)+qE=B^2-B+Eが成り立つとき、実数pとqをαを用いて表せ。 (3)行列M=A+αEの逆行列M^-1をA、E、αを用いて表せ。 (4)行列N=A^3-2A^2+3A+3Eの逆行列N^-1をAとEを用いて表せ。 (3)と(4)をお願いします>< 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 逆行列 複素数 画像の逆行列を求める際 aは複素数で空白は全て0です。 と問題文にあったのですが複素数を含んでいるからといって通常の 逆行列の求め方の変更点は特にないですよね。 4×4行列なので余因子行列は使わず(X E)を行基本変形で求めようと思ってます。 行列(ベクトル)で括る 行列の演算規則がわからないので質問します。不動点を求める問題で、Aを1次変換、Eを2次の単位行列とし、A→x=E→xを(A-E)→x=→O・・・(1)としているのが疑問です。 自分は、行列の積については交換法則が成り立たないので、不用意に文字式のように変形を行わないようにという注意書きや、 (A+B)(A-B)=A^2-(AB-BA)-B^2≠A^2-B^2などの例を見て、行列を因数分解できないときがあるという考えになりました。ただ、1つの正方行列Aの累乗と単位行列Eだけの式は普通の整式のように計算できる。との記述もあり頭が混乱しています。(1)が変形できるのは、行列の積は移項でき、分配法則も成り立つからでよいでしょうか?どなたか(1)が因数分解のように変形できる理由を教えてください。お願いします。 正則行列 行列Aが与えられたとして、Aにある行基本変形を施して、A1になったとする。次に、この行基本変形に対応する基本行列をX1とする。つぎにこのA1に行基本変形を施して、A2になったとする。 この行基本変形に対応する行列をX2とする。X2A1=X2X1A=A2である。 このような行基本変形をn回繰り返した結果得られた行列が、An=Bとなったとすると、 B=An=XnAn-1=XnXn-1An-2=、、、=Xn、、、X1A となる。そこでXn、、、X1=Xと置くと、XA=Bとなる。もし、階段行列Bが単位行列ならば、Aは正則となり、XはAの逆行列となる。 (ここからがわかりません) 逆に、Aが正則ならば、どの行ベクトルも、零ベクトルではない。これは、Bが単位行列となることを意味する。 とあるのですが、A=正則、Xは基本行列の積だから、X=正則ですが、XA=BのBについてなぜ単位行列となるのでしょうか? 線形代数の問題 A,Bはn次正方行列である。n=12、detA=2の時detBを求めろというもんだいです。ABAt=(detA)En ※AのとなりのtはAの転置の意味でEは単位行列をあらわします。 やっぱり左辺の式からAの逆行列Atの逆行列をかけてBだけにしてから求めるんでしょうか?よくわからないので教えてください。 n次正方行列Aが正則であることの定義を述べよ。 n次正方行列Aが正則であることの定義を述べよ。 (逆行列を用いて定義するときは、その定義も述べよ。) という問題があるのですが回答は n次正方行列Aに対して AX=XA=En(n次単位行列) をみたすn次正方行列XがあるときAは正則であるといい、 このときの行列XをA-1(Aインバース)と表して 「Aインバース」と読みAの逆行列という。 これで合ってますか? あと n次正方行列Aが等式A^3+A-E=0を満たすとき、 Aは正則であることを示せ。 またA-1をAおよびEを用いて表せ。 この問題が分かりません。 どなたか宜しくお願いします。 行列でAB=Eの時、Bは一意的に決まるでしょうか? A がn次正方行列で、Eが単位行列の時、AB=Eが成り立つなら、 n次の正方行列Bは一意的に決まることが証明できるでしょうか? 線形代数の問題 Aはn次正則行列で、n次正方行列BはAの逆行列である。またn次正方行列CはBの第i行と第j行を交換してできる行列であるとする。このとき、 Cの逆行列の第(i,j)成分はAの成分を用いて表すことができる。という問題が解けません。問題を式にしてみると B=A-1(Aの逆行列)、C=Bt(Bの転置)でこれはCの逆行列を求めるので C=Btの式の両辺にCの逆行列をかけて左辺を単位行列にして求めるんでしょうか?よくわかりません。見にくくてすみません。お願いします。 証明問題のヒントを…。 度々の質問で申し訳ありません。 線形代数学の証明問題でまた梃子摺っているので 御教授願えたらと思っています。 A、Bはともに3次の正方行列で AB=-2E(E:単位行列)を満たしている。 この時、Aの行列式(|A|)は0でなく、 かつBの行列式は-8/|A|が成り立つことを 示すのですが、 どうも糸口を見つける事が出来ません。 よろしくお願いします。 行列の証明問題 「正方行列Aについて、(1)A^2=Aかつ(2)A≠BならばAは逆行列を持たない事を証明せよ。」という証明問題ですが、背理法でやります。模範解答はA^-1をかけて、A=Eになり過程に矛盾していると書いてあり、理解できました。 そこで、個人的に考えた別の方法ですが、A^-2ををかけて、E=0を導いてはダメでしょうか。こっちのほうが微妙に考えやすいです。でも(2)の条件を使ってない(?)ですよね。どうなのでしょうか。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 正則を証明する問題 実数を成分とする2次の正方行列A,Bについて、次の問に答えよ。 Aが正則でB A^-1 B=0 となれば、A+BとA-Bはともに正則であることを示せ。 という問題です。A^-1は逆行列を表してします。 どのように解答すればいいのか検討もつきません・・よろしくお願いします。 行列 行列式の計算において行基本変形と列基本変形は両方とも使えるかについて 文字のない計算の場合は使えるがaやbなどの文字の入った連立方程式や行列式の因数分解の場合は行基本変形しか使用する事はできない 数学C 行列の問題 ここでは行列を(左上、右上、左下、右下)の順に書き、零行列を〇、単位行列をEとします。 2次の正方行列A=(a b c d)があり、Aの5乗=〇をみたす。 (1)Aは逆行列を持たないことを示せ。 (2)Aの2乗=(a+d)A となることを示せ。 (3)Aの2乗=〇 となることを示せ。 (4)A+Eが逆行列を持つことを示せ。 理系の中で数学Cがわかる方、1問でもいいので協力してください。 n次正方行列Aに関して次の[1]~[5]はすべて同値であることを証明せよ。 n次正方行列Aに関して次の[1]~[5]はすべて同値であることを証明せよ。 [1] Aは正則 [2] |A|≠0 [3] rank A = n [4] Aのn個の列ベクトルは1次独立。 [5] AB = Eを満たすn次正方行列Bが存在する。 [1]→[2] Aが正則であるから、Aには逆行列が存在し、AA^-1=Eとなる。 |AA^-1|=|E|より、|A||A^-1|=1≠0となり、|A|≠0であることがわかる。 ∴ Aが正則ならば|A|≠0である。 [2]→[3] P、Qを正則行列として、 PAQ=(Er 0 0 0) としたとき Aがn次正方行列なので、P、Q および右辺の行列もn次の正方行列である。 |A|≠0より|PAQ|≠0で(Er 0 0 0)≠0となり、r=nなり、rankA=nが言える。 ∴ |A|≠0ならば、rankA=nである。 [3]→[4] Aがn次正方行列でrankA=nより、 Aに基本変形を行い階段行列を作っていくと、最終的にn行n列の単位行列にできる。 よって、単位行列のn個の各列ベクトルは、単位基底であるので1次独立である。 ∴ rankA=nならば、Aのn個の列ベクトルは1次独立である。 [4]→[5] Aの列ベクトルをa1、a2、・・・、 anとする。 また、x1、x2、・・・・・、xnをスカラーとして、x1a1+x2a2+・・・・+xnan=0・・・(1)とする。 a1、a2、・・・・、anが1次独立であるので、(1)式中のxi(i=1、2、・・・n)はすべて0となる。 このとき|A|=0であると、xiが自明な解以外の解を持ってしまうので |A|≠0である必要がある。|A|≠0であれば、A^-1が存在し、AA^-1=Eとなる。 このとき、A^-1=Bとすれば、AB=Eとなる。 ∴ Aのn個の列ベクトルが1次独立ならば、AB=Eを満たすn次正方行列Bが存在する。 [5]→[1] AB=Eより、|A||B|=1 つまり|B|≠0。このことよりBC=Eとなる行列Cが存在する。 C=EC=(AB)C=A(BC)=AE=A。 ここで、BA=Eであることがわかる。 AB=EのBとBA=EのBが同じであり、Aに対して、Bが1つしか存在しない。 よって、BがAの逆行列であることがわかる。 Aに逆行列が存在するということは、Aは正則である。 ∴ AB=Eを満たすn次正方行列が存在すれば、Aは正則である。 上記のように解いたのですが、証明できていますでしょうか? アドバイスお願い致します。 線形代数の問題が分かりません2 (1)2次正方行列AでA^2=-Eとなるものを一つ見つけよ.ただしEは2次単位行列 (2)自然数nについて「実n次正方行列JでJ^2=-Enとなるようなものが存在する.」と「nは偶数.」が同値であることを示せ. という問題が分かりません.どなたか分かる方がいらっしゃいましたら,教えてください.よろしくお願いします. 線形結合がわかりません ベクトル a=(1,-1,3) b=(-2,2,-6) c=(3,3,3) d=(2,4,0) e=(2,1,3) の中から適当に一次独立なベクトルの組を選び、残りのベクトルをそれらの一次結合で表せ という問題があるのですが、ベクトルを並べて行列を作り、行基本変形をするまではわかるのですがその後の操作がわかりません。どなたか教えて下さい。おねがいします。 行列について x:2次の正方行列 E:2次の単位行列 x^n=(x^2-4x+3E)p(x)+ax+bEをみたす定数a,bがある。 問 定数a,bの値をもとめよ。 問 A=(5 -4)のとき (2 -1) ←2次の正方行列のつもり 問1を用いてA^nを求めよ。 よろしくお願いします。 線形代数の問題です。次のベクトルが一次従属か一次独立か。 (1) ( 0) (-1) a=(0) c=( 1) d=( 0) (1) (-1) ( 1) 拡大係数行列にして、行基本変形をしたら (1 0 0 0) (0 1 0 0) (0 0 1 0) となり一次独立。 これはわかりました。 (1) (2) a=(0) b=(1) (1) (1) この問題をやると (1 0 1 0) (0 1 -1 0) となり、よくわかりません ちなみにこれは一次独立らしいです。 また (1) ( 2) ( 0) a=(0) b=( 1) c=( 1) (1) (-1) (-1) この問題をやると (1 0 1 0) (0 1 -1 0) (0 0 0 0) だと一次従属らしいです。 よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。理解できました。