ベストアンサー ※ ChatGPTを利用し、要約された質問です(原文:log や Tan^-1 などの部分積分について) 部分積分法による問題集の解説 2013/02/21 21:01 このQ&Aのポイント 部分積分法を用いて解く問題集の途中式から答えまでの流れを解説します。問題集の内容には逆関数や対数が含まれますが、解答と一致しない場合についても考慮します。以下に、具体的な問題とその答えを示します。 log や Tan^-1 などの部分積分について 問題集を解いていますが、部分積分法で求めた時の途中式~答えまでの流れを教えてください。 お手数ですが、宜しくお願いします。どうやら逆関数や対数がでてくると、さらに苦手で、答えと一致しないので苦戦しております。 (1) ∫(1/e → e) log x dx (2) ∫( e → e^2 ) (log x) ^2 dx (3) ∫( 0 → 1/2 ) Sin^(-1) (x) dx (4) ∫( 0 → 1 ) Tan^(-1) (x) dx 答え (1) 2/e (2) 2e^(2) - e (3) (π/12 ) + (√3 / 2) - 1 (4) (π/4 ) - 1/2 log2 質問の原文を閉じる 質問の原文を表示する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22_ ベストアンサー率67% (2650/3922) 2013/02/21 23:23 回答No.1 (1)I=∫(1/e → e) log(x)dx =∫(1/e → e) 1*log(x)dx =[x*log(x)](1/e → e)-∫(1/e → e) x*(1/x)dx =e-(1/e)log(1/e)-∫(1/e → e) 1 dx =e+(1/e)-[x](1/e → e) =e+(1/e)-e+(1/e) =2/e (2)I=∫(e → e^2)(log(x))^2 dx =∫(e → e^2)1*(log(x))^2 dx =[x*(log(x))^2](e→e^2)-∫(e→e^2)x*(2log(x))*(1/x)dx =(e^2)*4-e-2∫(e→e^2)1*log(x)dx =4(e^2)-e-2{[xlog(x)](e→e^2)-∫(e→e^2)x*(1/x)dx} =4(e^2)-e-2{2(e^2)-e-∫(e→e^2)1 dx} =e+2{(e^2)-e} =2(e^2)-e (3)I=∫(0→1/2) Sin^(-1)(x)dx t=Sin^(-1)(x)(-π/2≦t≦π/2)とおくと sin(t)=x, dx=cos(t)dt より I=∫(0→π/6) t*cos(t)dt =[t*sin(t)](0→π/6)-∫(0→π/6)sin(t)dt =(π/12)-[-cos(t)](0→π/6) =(π/12)+(√3/2)-1 (4)I=∫(0→1) Tan^(-1)(x) dx t=Tan^(-1)(x)とおくと x=tan(t)(-π/2<t<π/2) dx=sec^2(t)dtより I=∫(0→π/4) t*sec^2(t) dt =[t*tan(t)](0→π/4)-∫(0→π/4) tan(t)dt =(π/4)-∫(0→π/4) -(cos(t))'/cos(t)dt (-π/2<t<π/2)よりcos(t)>0なので I=(π/4)+[log(cos(t))](0→π/4) =(π/4)+log(1/√2)-log(1) =(π/4)-(1/2)log(2) 質問者 お礼 2013/02/22 02:31 ありがとうございます。とくに(3)と(4)に苦戦しましたが、なんとか理解できました。自分でもとけるように頑張りたいと思います。なにしろ一人でやっていると分からない問題に遭遇したときに、先にすすまなくなるので、info22の説明には、助けられています。感謝です♪ 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A tanとlogの積分 いつもお世話になっています。 独学で数学を勉強し始めて、積分の範囲をやっていたのですが、 tanとlogの積分は区分求積法でも出来ず、 微分と積分が逆ということを知った後でも 基本的な関数の中でtanとlogの積分だけがわかりませんでした。 少し先を見て、部分積分をやるところでlogの積分、 置換積分をやるところでtanの積分の結果が載っていました。 私は自分で思いつく前に教科書の結果を見てしまったのですが、 logの積分で係数の1をxの微分とすることなどは思いつくものなのでしょうか? 自然な流れで思いつくのか、技巧的なのかがわからないので 皆さんの印象を教えてください。 tan の部分積分 いつもお世話になっています。 tan x の積分をしたくて、新しく覚えた部分積分というのを使ってみると ∫tan x dx = ∫(sin x)/(cos x) dx = ∫(-cos x)' (1/cos x) dx = (-cos x)(1/cos x) - ∫(-cos x) (sin x/cos^2 x) dx = -1 + ∫tan x dx と、おかしなことになりました。 部分積分の公式の元に戻って (fg)' = f'g + fg' と考えると f(x) = -cos x g(x) = 1/cos x となって、左辺が定数の微分になるので (-1)' = tan x - tan x だからあってます。 定数を f(x), g(x) に分解したあたりが怪しいような気がするのですが、 最初にやった部分積分の式で何をどうしたのがいけなかったのかが説明できません。 いったい何がだめだったのでしょうか? よろしくお願いします。 部分積分法で定積分を求めたいのですが~ 問題集を解いていますが、3つ分からない問題がありました。 部分積分法で求めた時の途中式~答えまでの流れを教えてください。 お手数ですが、宜しくお願いします。 (1) ∫(0→π/2) x cos2x dx (2) ∫(0→π/4) x^(2) sin2x dx (3) ∫(0→2π) e^(x) cos x dx 答え (1) -1/2 (2) π/8 - 1/4 (3) { e^(2π)-1 } / 2 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 不定積分の問題 不定積分の問題ですが、部分積分法で解く問題ですが、考えても解答通りにならないので、ここで質問するに至りました。途中計算等を教えてください。お手数になりますが、どうか宜しくお願いします。 (1)∫x sec^(2)(x) dx 私が解くと、xtanx- sec^(2) + c になります。 (2)∫Tan^(-1)(x)dx (3)∫Sin^(-1) (x/3)dx (4)∫e^(-2x) sin3x dx ↑部分積分法を繰り返してもとめるのですが、どのような切り口で求めるのかが分かりませんでした。 答え (1) x tan(x) + log | cos(x) | + C (2) xTan^(-1) (x) - (1/2)log{x^(2) +1} + C (3) xSin^(-1) (x/3) + √(9-x^(2)) + C (4) {-e^(-2x)/13 } (2sin3x + 3cos3x ) + C 置換積分法での解き方 問題集を解いていますが、5つ分からない問題がありました。 置換積分法で求めた時の途中式~答えまでの流れを教えてください。 お手数ですが、宜しくお願いします。 (1)∫(0→1) (x + 2 / x + 1) dx (t =x+1といた場合) (2)∫(1→e) {(log x)^2 / x } dx (t =log xといた場合) (3)∫(0→1) e^x { e^(x) + 1 } ^2 dx (t =e^(x) + 1といた場合) (4)∫(0→π/2) cos^(3) (x) ・sin x dx (t =cos x といた場合) (5)∫(0→π/2) cos x / {sin^(2)(x) + 1 } dx (t = sin x といた場合) 答え (1)1+ log2 (2)1/3 (3)1/3(e^3 + 3e^2 + 3e - 7) (4)1/4 (5)π/4 大学の不定積分について レポート課題の以下の問題がわかりません、よろしくお願いします<(_ _)> ・次の関数の不定積分を求めよ。 x/(-6+5x-x^2)^(1/2) ・次を示せ。 1)∫(tan(x))^n dx=(tan(x))^(n-1)/(n-1)-∫(tan(x))^(n-2) dx (n≧2) 2)∫(log(x))^n dx=x(log(x))^n-n∫(log(x))^(n-1) dx (n≧1) 3)I_n=∫{sin(nx)/sin(x)}dxとしたとき、(n-1)(I_n-I_(n-2))=2sin(n-1)x (n≧2) 解答は答えだけでなく、導く過程もよろしくお願いします。 積分 問題 1/tan^3x 積分 問題 1/tan^3x ∫1/tan^3x dxについて。 どのように解けば良いでしょうか? tan^2xまではsin^2x/cos^2xとして解けたのですが、 まったく解き方がわかりません。。。 ご回答よろしくお願い致します。 【定積分】全9問解き方教えて下さい※1問のみでも可 定積分の問題が解き方がわかりません。 教科書には答えだけがのっており、 数学が苦手な私は全然解き方が思いつきません。 【∫↑ ~ ∫↓】…定積分の範囲 (1) 【2π~0】 ∫cos^2x sin^2x dx 答え π/4 (2)【π/2~0】 ∫sin^4x dx 答え 3π/16 (3)【π~0】 ∫x^2 sin^2 dx 答え π(2π^2 -3)/12 (4)【π~0】 ∫√(1+cosx) dx 答え 2√2 (5)【2~0】 ∫x^2√(2x-x^2) dx 答え 5π/8 (6)【π/2~0】 ∫1/(4+5sinx) dx 答え log2/3 (7)【π/4~0】 ∫1/(1+2sin^2x) dx 答え π/3√3 (8)【2~1】 ∫1/√(x^2 -1) dx 答え log(2+√3) (9)【2~0】 ∫1/√(x(2-x)) dx 答え π 答えは解くときの参考にしてもらえたらと思います。 全部は解けないけど何問かはわかる、という方も 解答をお願いします。 初めての質問で至らない点もあるかと思いますが よろしくお願いします。 積分の定義からの計算 いつもお世話になっています。 独学で数学を勉強して、微分が終わり積分に入りました。 微分では基本的な関数(x^n, e^x, sin(x), cos(x), tan(x), log(x) )を 微分の定義から計算することができました。 積分も同じように、区分求積法で上記の関数を計算するところから スタートすると思っていたのですが、 実際にやってみると tan(x), log(x) がどうしてもできません。 教科書やネットを見ても、微分と積分は逆だということを示してから、 それを使って積分の計算をするという流れになっているようです。 一方で、微分と積分が逆だとわかったのは、歴史的には後になってから というような記述も見つけました。 とすると、やっぱり tan(x), log(x) を区分求積法で計算できないのは 自分ができていないだけのような気もします。 tan(x), log(x) は区分求積法で計算できないのでしょうか? それとも、できるけども複雑なので、現在では微分と積分が逆ということを説明してから、 楽な方法で tan(x), log(x) などの積分を求めるという流れの説明になっているのでしょうか? log(sin)dxの積分について x^2log(sin π(パイ)x)dx [0~1/2]の積分が上手く出来ません。 log(sin π(パイ)x)dx [0~1/2]に関しては置換積分を用いてとくことは出来たので、おそらく同じようにして置換積分を利用してとくと思うのですが・・・ どなたかよろしくお願いします。 積分の問題 ∫log(1+x)/(1+x^2) dx (x;0~1までの定積分) 上の問題がわかりません。x=tanθと置き、 ∫log(1+tanθ)dθ (θ;0~π/4) とまではしてみたのですがここから先がどうしてもうまく解けません。 sinθ+cosθ=√2 sin(θ+π/4) , sin(π/2-θ)=cosθ を利用するらしいのですが、どのようにして解けばいいのでしょうか? どなたかわかる方、教えていただけたら幸いです。 よろしくお願いします。 大学 微分積分 大学の数学の問題です (1) tan^-1 1/x^2 + tan^-1 x^2 これを最終的に加法定理で求めようとすると答えが0になってしまいます('A (2)不定積分 ∫(x+2)/(2x^2+1) dx (3)不定積分 ∫sin x/2 sin x/3 dx この3問わかる方お願いします<(_ _)> 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 積分に関してです。 次の問題を解いてくれませんか。 (1)積分範囲(0→1)で∫e^x/(1-e^2x)^1/2 dxの定積分。 途中計算も大まかにお願いします。 (2)t=tanθとおく。sinθcosθをtで表せ。 ∫[0→π/4]log(tanx)dxの積分 tanx=e^tとおいて dx/cos²x=e^tdt dx=(e^tcos²x)dt ={e^t/(1+tan²x)}dt =e^t/{1+e^(2t)}dt log(tanx)=log(e^t)=t として 積分範囲を-∞~0に変え ∫[-∞→0]te^t/{1+e^(2t)}dt としたのですがここからいきづまりました どのようにやるといいでしょうか 対数関数と微分積分 対数関数と微分積分 対数関数でlog x=1/xと言うのは決まり文句ですか。 log 2=1/2ですか。 後、微積で4x^3=x^4と言うのは積分するとa^nのnが消えaが指数になるのですか。 最後に ∫1/x・x^4 ↓ ∫x^ 3 dx ↓ 1/4+Cになった理由を教えて下さい。 問題の式は∫4x^3log x dxです。 積分 こんばんは。 次の積分の問題の解き方の流れがわかりません。 ∫(sin2x・cosx)dx まずsin2xを2sinx・cosxにして解いてみたのですがsinx^3が出てきて計算が複雑になったためか、答えが解答と一致しません。 また、解答にはヒントとして、sin2xcosx=1/2(sin3x+sinx)が書いてあったのですが、これはどのようにして出されたのでしょうか? よろしくお願いします。 積分計算 ∫1/(a+x^2/(2b))^2 dxの積分はどうなるのでしょうか? 積分区間がよくはっきりとかかれていないのですが、答えは2b/aになるようなのですが・・・。 おそらくx/(2b)^0.5=a^0.5 tanθと置換するとおもうのですが、答えが一致しません。 積分方法がまちがっているのでしょうか? 三角関数の積分 1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。 微分積分 問題 提出期限が迫っていて困っています。 いろいろと問題を解いてきたのですが、 残る微分積分が理解できずかなり苦戦中です。 わかる方教えてください。 宜しくお願いします。 I 次の関数を微分せよ(f')。 1) 3x**2 + 5x + 2 2) 1 / (3x) 3) (2x + 1) / (x**2 + 5x + 3) 4) (2x + 1)**(1/2) 5) 1 / (x**2 - 2x + 3)**(1/2) 6) 3 log x 7) x log (2x + 1) 8) e**(2x) 9) x**(1/3) 10) sin x + cos 2x 11) e**x cos x 12) log x / sin x 13) x log x - tan x 14) (x**3 + 3x**2 - 6x + 2)**3 15) (x**3 + 2x - 1)**(1/2) II 上問 1-2, 6-11の第2階導関数をもとめよ(f'')。 III 次の関数の不定積分(原始関数)を求めよ。 1) x**2 - 4x + 1 2) 1 / (x + 3)**2 3) x**(2/3) 4) (3x + 2)**(1/2) 5) 1 / (2x) (x > 0) 6) 1 / (x**2 - 1) (x > 1) 7) e**(2x) 8) x log x 9) sin x + cos 2x 10) x cos x 11) x**2 e**x IV 上問 1-5, 7-8, 11の区間 [ 1, 2 ] 上の定積分を求めよ。 (x**2はxの2乗を、x**(1/3)はxの1/3乗(3乗根)を表わす。) 不定積分の問題で ∫((1/x)+logx)e^x dx (log xは自然対数が底である。)を部分積分や置換積分をやってもうまくいきません。 どのようにしたら解けますか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。とくに(3)と(4)に苦戦しましたが、なんとか理解できました。自分でもとけるように頑張りたいと思います。なにしろ一人でやっていると分からない問題に遭遇したときに、先にすすまなくなるので、info22の説明には、助けられています。感謝です♪