- 締切済み
曲線C1:y=px^4+qx^2+1は
曲線C1:y=px^4+qx^2+1は点(1,0)を通り曲線C2:y=a(x^2-1)(a>-1)と点Aにおいて共通の接線をもつとする 曲線C1とx軸とで囲まれたx軸より上の部分の面積とx軸より下の2つの部分の面積の和とが等しくなるようなaの値を求めよ p、qをaで表し、それに伴いC1をaで表したり、C1、C2が偶関数で対称性を持っていたりは分かるのですがそれ止まりです どう解けばよいか教えてください
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- Tacosan
- ベストアンサー率23% (3656/15482)
回答No.1
「点A」ってどこ?
補足
書き忘れです 曲線C1:y=px^4+qx^2+1は点A(1,0)を通り曲線C2:y=a(x^2-1)(a>-1)と点Aにおいて共通の接線をもつとする 曲線C1とx軸とで囲まれたx軸より上の部分の面積とx軸より下の2つの部分の面積の和とが等しくなるようなaの値を求めよ