• ベストアンサー

確率の問題です。

かなり簡単過ぎてこんな質問するなんて馬鹿じゃないのかと思われる方もいらっしゃるかもしれませんが、そこはご了承下さい。 四択問題を2回続けて成功する確率と通りの数の計算方法なのですが、答えは16分の1と16通りだと思うのですが途中の計算式を言葉で上手く説明する事が出来ません。 なので誰か分かりやすく説明して頂け無いでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • ORUKA1951
  • ベストアンサー率45% (5062/11036)
回答No.3

一問が正解する確率は、1/4 ですね。 二問目が正解する確率も、1/4です。 ★一問目と二問目は、独立していますから、両方が正解する確率は1/4 × 1/4 = 1/16  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  この独立の考え方を忘れないように。全部で16通りあるから・・なんてのは使いません。反って複雑になります。  次を解いてみてください。 では、両方とも不正解になる確率は????? 3/4 × 3/4 = 9/16 と解くか 不正解な回答は、bb bc bd cb cc cd・・・と9通りだから、9/16 と解くか 今度は一方だけ正解する確率は?  全部あわせて、16/16 = 1になりますか? 独立していない場合の問題です。 (1)と(2)の問題にあてはまるものをA-Dから選択しなさい。 (1) 酸素 (2) 炭素 (A)H,(B)H,(C)Na,(D)C  

noname#171825
質問者

お礼

回答ありがとうございました!!

その他の回答 (2)

  • suko22
  • ベストアンサー率69% (325/469)
回答No.2

問1の4択をA,B,C,D 問2の4択をA,B,C,Dとします。 2問の問から答えを選ぶとき、起こりうるすべての場合の数は4×4=16通りあります。 わかりにくければ樹形図で考えてください。  問1A-問2-A,     -問2-B 他。 このうち、正解の組み合わせは1通り。 確率の定義(連続正解が起こる組み合わせの数)/(起こりうるすべての組み合わせの数)より、 連続正解する確率は1/16(ただし、それぞれの組み合わせを選ぶ割合が等しいときに限る。この状況に近いものは受験者がまったくの勘で選ぶ場合とか。)

noname#171825
質問者

お礼

回答ありがとうございました。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

「四択問題」というのは、4本中1本が当たりの福引とは ちょっと違うのではないでしょうか。 状況の詳細が不明ですが、試験の問題だったとすれば、 よく勉強している人は、二問とも正解し易いだろうし、 全く勉強していなければ、確率は (1/4)×(1/4) なのかも しれません。

noname#171825
質問者

お礼

回答ありがとうございました!!

関連するQ&A