ベストアンサー 漸化式 2012/09/08 17:51 a_1=2,a_(n+1)=a_(n)+3n (n=1,2,3,・・・) で定まる数列a_nの一般項を求めよ。 自分で、a_n=a_n+f(n)の形にしても解けませんでした。 この問題の解き方を教えてください。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2012/09/08 20:12 回答No.3 a_n = a_n + f(n) になる訳がない。 a_(n+1) = a_n + f(n) の形にして下さい。 そうすれば、 a_n = a_1 + f(1) + f(2) + f(3) + … + f(n-1) であることが解るでしょう。 a_2 = a_1 + f(1), a_3 = a_2 + f(2) = a_1 + f(1) + f(2), a_4 = a_3 + f(3) = a_1 + f(1) + f(2) + f(3), a_5 = … ですからね。 ここでは、a_1 = 2, f(n) = 3n ですから、 a_n = 2 + (3 + 6 + 9 + … + 3(n-1)) です。 等差級数の公式を知っていれば、 a_n = 2 + (3 + 3(n-1))・(n-1)/2 と求まります。 質問者 お礼 2012/09/09 15:46 ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) spring135 ベストアンサー率44% (1487/3332) 2012/09/08 21:04 回答No.4 a_(n+1)=a_(n)+3n a_(n)=a_(n-1)+3(n-1) . . . a_(3)=a_(2)+3*2 a_(2)=a_(1)+3*1 (*は×) このまま足して左辺と右辺で共通のものを消して a_(n+1)=a_(1)+3n+3(n-1)+......3*1 =2+3*n*(n+1)/2 a_(n)=2+3n(n-1)/2 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 bgm38489 ベストアンサー率29% (633/2168) 2012/09/08 18:40 回答No.1 僕が長々説明するよりも、次のサイト参照。 http://www.geocities.co.jp/Technopolis/1505/zk21.htm 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 漸化式について。 a_1=1, a_(n+1)=3a_n+4nで定められた数列{a_n}の一般項を求めよ。 という問題なんですが、解説を読んでも理解できません;; 解説には、b_n=a_n-(αn+β)とおいて、数列{b_n}が等比数列になるように、αとβを求め、一般項を出す、というやり方で書いてあります。 何故b_n=a_n-(αn+β)とおくのでしょうか?αn+βがどこから出てきたのか分かりません・・・。 また、{b_n}が等比数列になるようにαとβを求める、ということも理解できません。 何故、b_nは等比数列にならなければいけないのでしょうか? どなたか教えてください。お願いします。 数B 漸化式 数列{a_n}をa_1=4、a_(n+1)=4-3/a_n で定め、 b_n=a_1・a_2……a_n、c_n=b_(n+1)-b_n とおく。 (1)数列{c_n}の一般項を求めよ。 (2)数列{b_n}の一般項を求めよ。 (3)数列{a_n}の一般項を求めよ。 この問題について回答よろしくおねがいします。 漸化式について a[1]=3 a[n+1]=a[n]+n と定義される数列があります。 公差がnなので、 a[n]=3+(n-1)n=n^2-n+3 と一般項が求まります。 しかし、答えをみると、 a[n+1]-a[n]=n を利用し、階差数列b[n]にした後に、a[n]の一般項を求める形を取っています。 そして答えが、(n^2-n+6)/2と、先程求めた答えと異なります。 最初に求めた方法は使えないのでしょうか? 何方か説明お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 漸化式 (1)a_1=3 a_(n+1)=2a_n+1 によって定まる数列{a_n}の一般項を求めよ (2)a_1=2 a_(n+1)=a_n+3n によって定まる数列{a_n}の一般項を求めよ この解法を教えてください。 漸化式 よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。 A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7 よって、一般に An=2/(2n-1) ・・・・・・(1) となることが推測される。 一般項が(1)である数列{An}が、条件を満たすことを示す。 [1] (1)でn=1とおくと A1=2 [2] (1)をAn/(1+An)に代入すると An/(1+An)=2/(2n-1)÷{1+2/(2n-1)} =2/(2n-1)÷(2n+1)/(2n-1) =2/(2n+1) =2/{2(n+1)-1} よって、An+1=An/(1+An) が成り立つ。 [1]、[2]から、求める一般項は An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。 漸化式の変形 漸化式の書き方はよく分からないんですけど、数列の第3項はA_3のように書きたいと思います。 数列A_nがA_1=3,A_n+1=2A_n-nで定義されるとき、一般項A_nを求めよ。 上のような問題でA_n+1=2A_n-nを変形すると、A_n+1-(n+2)=2(A_n-(n+1))と変形できると解答にあるのですが、 右辺の(n+1)って何ですか?また、これの導き方を教えていただきたいです。 漸化式 1、a(1)=1、a(2)=6、2(2n+3)a(n+1)=(n+1)a(n+2)+4(n+2) (n=1,2,3…)で定義される数列{a(n)}について (1)b(n)=a(n+1)-2a(n)とおくとき、b(n)をnの式で表せ。 (2)a(n)をnの式で表せ。 (3)数列{a(n)}の初項から第n項までの和S(n)=a(1)+a(2)+……+a(n)を求めよ。 2、数列{a(n)}の初項a(1)から第n項までの和をS(n)と表す。この数列がa(1)=0、a(2)=1、(n-1)の2乗a(n)=S(n) (n≧1)を満たす時、一般項a(n)を求めよ。 *a,bのうしろの( )はその文字についてる小さいやつです。分かりにくい打ち方ですいません。 式も書いて教えて下さい。よろしくお願いします。 数B 数列 漸化式 次のように定められた数列の一般項a(n)を求めよ。a1=3,a(n+1)=a(n)+n+1 (n=1,2,3••••••) この問題の解き方が分からないので教えて下さい!!よろしくお願いします! 数B 漸化式の問題 数列{a[n]}は、初項a[1]=2, a[n+1]=a[n]/(4a[n]+3) (n=1,2,3,……)により定められる。数列{a[n]}の一般項を求めよ。 逆数をとり、 1/a[n+1]=(4a[n]+3)/a[n]=(3/a[n])+4 ここまでは分かるのですが、どのように b[n+1]=b[n]+… のような形に持っていくのかが分かりません。 解答はa[n]=2/{5・3^(n-1) -4}なのですが、 自分でやってみると、 a[n]=3/(4n-2/7) のようになってしまします。 よろしくお願いします。 漸化式の問題 漸化式の単元の問題でわからないものがあるので教えてください。問題は「数列{a_n}が次の漸化式を満たすとき、{a_n}の一般項を求めよ。 a_1=2 , a_n+1=2a_n+2n+1(n=1,2,3...)」というものです。 どなたか解法を教えて下さいませんか?よろしくお願い致します。 漸化式の問題です。 次の問題の解答と解説をお願いします。 次の条件で定義される数列{a[n]}の一般項を求めよ。 (1)a[1]=5, a[n+1]=8a[n]^2 (n=1,2,3,……) (2)a[1]=1, a[2]=2, a[n+2]+3a[n+1]-4a[n]=0 (n=1,2,3,……) 漸化式 数列{a_n}の一般項を求めよ。 (1)a_1=-2, a_n+1=5a_n+12 (2)a_1=5,a_n+1=-4a_n+10 (3)a_1=1,a_n+1=(1/2)a_n+2 この解法と答えを教えてください。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数IIBの数列の漸化式の問題です。 数IIBの数列の漸化式の問題です。 本当に分からないので、基礎の知識から詳しく教えてもらえるとありがたいです・・・ 1. 数列1,1,4,1,4,9,1,4,9,16,1,4,9,16,25,・・・・・・がある。 この数列の第100項および初項から第100項までの和を求めよ。 2 数列1,2,3,・・・・・,nにおいて次の積の和を求めよ。 (1)異なる2つの項の積の和(n≧2) (2)互いに隣り合わない異なる2つの項の積の和(n≧3) 3 次の条件によって定められる数列{An}の一般項を求めよ。 (1)A1=1 An+1=9-2An (2)A1=1 An+1=4An+3 4 数列{An}の初項から第n項までの和SnがSn=n-Anであるとき、a1,a2,a3および{An}の一般項を求めよ。 漸化式の極限 次の条件で定義される数列{An}の一般項を求め、{An}の極限を求めよ。(書き方がよく分からないので、ちっちゃくしたに書く文字の前には _ をつけておきました) A_1=1 A_(n+1)=(1/3)A_(n)+2 ←問題 で、A_(n+1) -3=(1/3)(A_(n) -3) ←この式の意味が分かりません・・・。 数列 (漸化式) A[1]=1 A[n+1]=4A[n]+2^n (n=1,2,・・・) {A[n]}の一般項を求めたいのですが 両辺2^nで割って、B[n]=A[n]/2^(n-1)とおくと、 B[n]+1=2(B[n]+1)とおけるから特性方程式より、B[n]が2^n -1と求められました その後はA[n]=・・・ どうすればいいのでしょうか? 等差数列なら A[1]+ΣB[k] k=1~(n-1)という感じで求められたのですが・・・ この数列は等差数列なのか、等比数列なのか・・・ 一見等差数列のようですが、+2^nがついていてこれも定数じゃないから、等差数列ともいえないな・・・と思いました。 階差数列?とはいえないかもしれないけど、B[n]が求まったらその後の段階としてどうすればいいのでしょうか、よろしくおねがいします。 2数列の漸化式 2つの数列 a(n+1)=a(n)+b(n) b(n+1)=a(n)*b(n) a(1)=1,b(1)=1 としたときの一般項の求め方が分かりません。 {a(n)}=1,2,3,5,11… {b(n)}=1,1,2,6,30… となっています。 【漸化式と数列】 数列{an}は次の2つの条件(A)、(B)をみたす。 (A)an>0(n=1、2、3) (B)Σ(k=1~n)ak^2={Σ(k=1~n)ak}^2 (1)a1、a2、a3を求めよ。 (2)a(n+1)^2=a(n+1)+2Σ(k=1~n)akが成り立つことを証明せよ。 (3)数列{an}の一般項を求めよ。 答え (1)a1=1、a2=2、a3=3 (3)an=n 証明問題もありますが… 解ける方がいらっしゃいましたら、 解説お願いしますm(__)m 漸化式と数列 数列a1,a2,......anが a1=2, an+1=3an+8(n=1,2,3,......)を満たしている時 (1) 一般項anをnであらわせ (2) 初項から第n項までの和をSnであらわせです 考え方を教えてください ちなみに答えは an=2/3^n -4 Sn=3^n+1 -4n-3です 数列 漸化式 A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1 となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。 漸化式の特性方程式について 数列において、第n項をA(n)と表記いたします。 漸化式A(n+1)=2A(n)+1・・・(1)かつA(1)=3を満たす数列のA(n)を求めなさい。という問題について、p=2p+1(←特性方程式)を解き、そのpの値を{A(n+1)-p}=2{A(n)-p}に代入することで、数列A(n)-pは公費2の等比数列で・・・と解きますよね?なぜ特性方程式では、A(n+1)、A(n)ともにpとしてよいのでしょうか?どなたかご存知の方お見えでしたらよろしくお願いいたします。 また、その答えとして、(1)式を{A(n+1)-p}=r{A(n)-p}・・・(2)の形にできるとして導くという方法が有名だと思いますが、なぜ、(1)式は(2)式のように等比数列の形に直せると仮定できるのでしょうか?よろしくお願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。