締切済み スカラーの問題を教えてください。 2012/06/03 00:50 スカラー場 φ=x^2+y^2+z^2の次の曲線Cに沿う線積分を求めよ ・Cは点P(-1,0,0)からQ(1,0,2) ずっとやってるんですが解けなくて困っています(;_; みんなの回答 (2) 専門家の回答 みんなの回答 muturajcp ベストアンサー率77% (511/658) 2012/06/04 05:18 回答No.2 0≦t≦1 (x(t),y(t),z(t)) =(1-t)P+tQ =(1-t)(-1,0,0)+t(1,0,2) =(t-1,0,0)+(t,0,2t) =(2t-1,0,2t) ∫_Cφds =∫_{0~1}(x(t)^2+y(t)^2+z(t)^2)dt =∫_{0~1}{(2t-1)^2+(2t)^2}dt =∫_{0~1}{8t^2-4t+1}dt =[8t^3/3-2t^2+t]_{0~1} =8/3-2+1 =5/3 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2012/06/03 00:56 回答No.1 曲線がありません. 質問者 補足 2012/06/03 01:24 すいません。 スカラー場 φ=x^2+y^2+z^2の次の曲線Cに沿う線積分∫c Φdsを求めよ ・Cは点P(-1,0,0)からQ(1,0,2)へ至る線分 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学(スカラーポテンシャル)について 次の式で与えられるベクトル値関数Fについて、∇×Fを求めよ。 またこのFにはスカラーポテンシャルが存在しないことを示せ。 F(x,y,z)=(-y/x^2+y^2)ex+(x/x^2+y^2)xy ただしex、eyはx、y方向の単位ベクトルとする。 また∇×FはrotFを表す。 ∇×Fについてはゼロベクトルとなりました。 次にスカラーポテンシャルが存在しないことを示せについて。 あるスカラー関数φをφ(x,y,z)として、∇φ=[∂φ/∂x ∂φ/∂y ∂φ/∂z] またF=[-y/(x^2+y^2) x/(x^2+y^2) 0]であり、x成分をxで積分、y成分をyで積分 z成分をzで積分しました。 x成分→ -arcTan(x/y)+C(y,z) y成分→ arcTan(y/x)+C(x,z) z成分→ C(x,y) となりこれらが全て等しくなるような任意の関数Cは存在しないから F=∇φとなるようなφは存在せずスカラーポテンシャルは存在しない と証明できたと思っていたのですが、のちのちスカラーポテンシャルの参考書を読んでいると スカラーポテンシャルが存在するための必要十分条件がrotF=0ということを知り、 あれ?ってなりました。 私の積分している証明がおかしいとしても、rotF=0は合ってると思いますし、それでスカラーポテンシャルが存在しないことの証明っていうのはどういうことなのでしょうか? 問題が間違っているのでしょうか? どこか間違っているところがあれば指摘してください。 宜しくお願いします。 選積分の問題です、教えてください! 選積分の問題です、教えてください! 原点O、点P(3,1,2)とし、スカラー場f(x,y,z)=zy^2+xZ^2+yx^2とする。 1,媒介変数tを用いて直線OPの方程式を求めよ。 2,線分OPをCとするとき、線積分∫fdsを求めよ(積分範囲はC) お願いします 平面スカラー場の線積分について x-y 平面上の領域 D で関数 f(x,y) が定義され、D 内にある平面曲線 C を x = x(t), y = y(t) (a ≦ t ≦ b) ・・・・・・・ (#0) で表わすとき、この「曲線 C に沿った線積分」を線素 ds = √(dx^2 + dy^2) = √( (dx/dt)^2 + (dy/dt)^2 ) dt を使って ∫_C f(x,y) ds = ∫[a,b] f( x(t),y(t) ) √( (dx/dt)^2 + (dy/dt)^2 ) dt ・・・・・・・ (#1) と定義する。 (#1)が「曲線 C に沿ってできる」x-y 平面に垂直なカーテン状の曲面の面積を表すことはわかりやすいのですが、ちょっとわかりにくいのが「曲線 C に沿ってできる x に関する」線積分 ∫_C f(x,y) dx = ∫[a,b] f( x(t),y(t) ) dx/dt dt ・・・・・・・ (#2) の定義です。もし、(#0) の曲線 C の y と x が一対一に対応していたら、(#2) の線積分は (#1) の曲面を x-z 平面に投影した図形の面積を表すと解釈してよいのでしょうか。 ベクトル解析の参考書を2冊持っているのですが、そんな説明はどちらの参考書にもないので心配なのです(笑)。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム スカラー場のデルタ関数の性質について スカラー場 f(x,y,z) のデルタ関数 δ(f(x,y,x)) の性質について質問します. この δ(f(x,y,x)) と,δ(x,y,x) の関係はどのようになるのでしょうか? f(x,y,z) = 0 を満たすある一つの (a,b,c) については, δ(f(x,y,x)) = ( 1 / |grad f(a,b,c)| ) δ(x-a, y-b, z-c) となると思いますが,f(x,y,z) = 0 を満たす点が無限にあると考えると, よく分からなくなってしまいます. どのように考えればよいのでしょうか? また, ∫∫∫δ(f(x,y,x)) dxdydz は,積分した体積に含まれる等位面 f(x,y,z) = 0 の面積となりますでしょうか? 勉強不足で申し訳ありませんが, どなたかご教示いただければ幸いです. 積分法の問題 積分法の問題をまとめて出されたのですが、 どれもさっぱりわかりません…。 5問あるのですが、どれか1つでもわかる方がいらっしゃいましたら、回答していただけるとありがたいです。考え方だけでも、大歓迎です。 Q1.次の面積を求めよ。 (1)曲線 y=3^X+2^X-2x と x軸とで囲まれる部分 (2)2^(x-1)+2^(y-2)≦5 かつ y≧2^x で表される領域 Q2.曲線C:y=-2^x と D:y+a=2^(x-a) が相異なる2点で交わる時、 (1) aはどんな範囲にならなくてはならないか、その範囲を求めよ。 (2) CとDで囲まれた部分の面積S(a)を求めよ。 (3) S(a)が最大となるaの値を求めよ。 Q3.曲線C:y=3^x+px+q と C上の点P(a,3^a+pa+q) (aは正の定数)における接線l(エル)とで囲まれる部分の面積を求めよ。 Q4.2つの曲線y=3^x-x と y=2^x-a が1点Pを通り、Pにおいて共通の接線を持っている。この2つの曲線で囲まれた部分の面積を求めよ。 Q5.関数f(x)=3^x-2a2^x+2^ax (a>0)について、曲線y=f(x)と直線y=mxで囲まれた2つの部分の面積が等しくなるようなmの値を求めよ。 ただし、0<m<2^aとする。 それでは、よろしくお願い致します。 線積分 ベクトル場F=xy e_x-z e_y+x^2 e_zとスカラー場φ=2xyz^2について、曲線Cをt=0からt=1にいたる空間曲線x=t^2,y=2t,z=t^3とするとき、次の線積分を経路Cに沿って計算せよ。 (1)∫[C] F × dr (2)∫[C] φ dr ただし、F,e_x,e_y,e_z,drのrはベクトルである。 です。途中式もお願いします。 微積分で解く問題だと思いますが、次の問題の解法が分かりません。 微積分で解く問題だと思いますが、次の問題の解法が分かりません。 曲線がある時、曲線上の点P(α,f(α))とし、 曲線に対する点Pのでの接線とX軸との交点Qとする時 |PQ|が一定であるような曲線の式を求めよ、という問題です。 曲線がy=f(x)のような素直な式なのかどうかすら定かではありません。 何かいい解法がございましたら、ご教授願います。 極値の問題です。問題集をといているのですが解説がなくて全くわかりません z=(x^2+y^2)(x^2+y^2-2x)-y^2について 1.極値を求めてください 2.点P(2,0)における接平面と法線の方程式を求めてください 3.曲線0=(x^2+y^2)(x^2+y^2-2x)-y^2はQ(3/4,3√3/4)のちかくで陰関数を持つことを示してください 4.3.で、曲線上の点Qにおける接線の方程式を求めてください 以上です 多くなってしまいましたがお願いします 積分の問題で 積分の問題で D:積分範囲 ∬(p*x^2+q*y^2)dxdy={(p+q)/2}*∬(x^2+y^2)dxdy D:0≦x^2+y^2≦a^2 ∫∫∫(a*x^2+b*y^2+c*z^2)dxdydz={(a+b+c)/3}*∫∫∫(x^2+y^2z^2)dxdydz D:x^2+y^2+z^2 問題を解いていたら上のような式変形が出てきたのですが、 なぜ等式がなりたつのでしょうか?? 何かの公式でしょうか?? どなたかお願いします。 積分法の問題(改) 積分法の問題をまとめて出されたのですが、 どれもさっぱりわかりません…。 5問あるのですが、どれか1つでもわかる方がいらっしゃいましたら、回答していただけるとありがたいです。考え方だけでも、大歓迎です。 Q1.次の面積を求めよ。 (1)曲線 y=x^3+x^2-2x と x軸とで囲まれる部分 (2)(x-1)^2+(y-2)^2≦5 かつ y≧2^x で表される領域 Q2.曲線C:y=-x^2 と D:y+a=(x-a)^2 が相異なる2点で交わる時、 (1) aはどんな範囲にならなくてはならないか、その範囲を求めよ。 (2) CとDで囲まれた部分の面積S(a)を求めよ。 (3) S(a)が最大となるaの値を求めよ。 Q3.曲線C:y=x^3+px+q と C上の点P(a,a^3+pa+q) (aは正の定数)における接線l(エル)とで囲まれる部分の面積を求めよ。 Q4.2つの曲線y=x^3-x と y=x^2-a が1点Pを通り、Pにおいて共通の接線を持っている。この2つの曲線で囲まれた部分の面積を求めよ。 Q5.関数f(x)=x^3-2ax^2+a^2x (a>0)について、曲線y=f(x)と直線y=mxで囲まれた2つの部分の面積が等しくなるようなmの値を求めよ。 ただし、0<m<a^2とする。 それでは、どうぞよろしくお願いいたします。 先ほどの投稿の表記の誤り、本当に申し訳ありませんでした。 数学の問題です! 滑らかな曲線Cを考える。C上のx軸、y軸上にない点Pに対してx軸、y軸上への垂線の足をそれぞれQ、Rとする。 (1)曲線Cの軸上にない任意の点P(x,y)で、曲線Cへの法線が線分QRを2等分する。点Pにおける接線の傾きをy'とするとき、y'を変数x、yで表せ。 (2)曲線Cが点(1,2)を通るとき、Cを図示せよ。 よろしくお願いします>< スカラー関数 スカラー関数V(x,y,z)=xy+3x^2y-2yz^2について、点(1,1,1)における傾きを求める問題ですがこれはどのように解いていったらいいのでしょうか?基礎が全くできていないのでお手柔らかにお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学の問題です! 媒介変数tにより表示された曲線C:x=(cost)^3、y=(sint)^3、(0≦t≦π/2)上に点P((cosθ)^3、(sinθ)^3)をとる。0<θ<π/2のとき、PにおけるCの接線をlとし、θ=0、π/2のときはそれぞれx軸、y軸をlと定める。このとき、次の問いに答えよ。 (1)0<θ<π/2のとき、lの方程式を求めよ。 (2)0≦θ≦π/2のとき、Pにおいてlに接する半径2の円の中心のうち、第1象限にある点をQとする。Qの座標を求めよ。 (3)PがC上を動くとき、Qの描く曲線の長さを求めよ。 よろしくお願いします>< 線積分 二点P,Qを両端とする曲線をCとし、C上の上で一価連続である函数をf(x,y,z)とする。曲線Cを点P1,P2…Pn-1においてn個の微小な弧に分割し、その各々の長さを Δs1,Δs2…Δsnとし、各弧の上に点Q1,Q2…Qnをとり、それらに対する函数地をf1,f2…fnとして、次の和を作る。 Σ(i=1,nまで)fiΔsi = f1Δs1 + f2Δs2 +…fn+Δsn ここで、なぜfとΔsを掛けているのかわかりません。 なぜか教えてください。 ちなみに、線積分というものをよく理解していませんのでw よろしくお願いしますm(_ _)m 数学の問題です。 3曲線C1:y=f(x)、C2:y=x^2、C3:(1/2)x^2のグラフが図のようになっている。曲線C2の上の点Pにおいて、y軸に平行な直線を引き、C3との交点をQ、Pにおいてx軸に平行な直線を引き、C1との交点をRとする。曲線C1、C2、線分PRの囲む図形の面積をS1、曲線C2、C3、線分PQの囲む図形の面積をS2とする。 (1)点Pの座標を(u,u^2)、点Rの座標を(v,f(v))とおいたとき、面積S1を定積分を含むuとvの式で表せ。 (2)点Pが曲線C2の上を動くとき、つねにS1=S2が成立する。このとき、関数f(x)を決定せよ。 (1)はS1=∫[0,v]f(x)dx+(2/3)u^3+vu^2になりました。 (2)でS2を計算するとS2=(1/6)u^3になってS1=S2で計算しましたがf(x)まで持っていけません。 詳しく解説していただけないでしょうか。 よろしくお願いします。 微積の問題です。 どなたか以下の問題の答えを教えてください。 (1)スカラー場f(x,y)、ベクトル場V(x,y)に対して、∇・(fV)=(∇f)・V+f∇・Vを示せ (2)V=(2x+y,-x-3y),Cは(0,0)(1,0)(1,1)を順に結ぶ折れ線である。このとき、曲線C上で、微積分∮c V・dr を求めよ ベクトルの問題です 空間の点Pから平面x+y-z=0に垂線を下し、その足をMとしPMの延長上にPM=MQとなる点Qをとる。 点Pが直線x=y+1=z-1の上を動くとき、点Qの描く図形の方程式を求めよ <教科書の回答> P(x、y、z)、 Q(X.Y,Z)とおくと Pは直線上の点であるから x=y+1=z-1 。。。。。(A) PQ→は平面の法泉ベクトルの一つだから、 (X-x、Y-y、Z-z)=K(1,1、-1)。。。(B) PQの中点( (X+x) / 2 , (Y+y)/2、 (Z+z) /2 )が平面上にあるから、 (X+x) /2 + (Y + y) /2 (-Z+z) /2 =0 ∴X+Y-Z+x+y-z=0。。。。。(C) (A)(B)(C)からx、y、z、kを消去すれば良い X,Y,Zをx、y、zに書き換えて x=y+1=(z+7)/5 質問です、 法線ベクトルについては理解してるつもりですので、 Bについては理解できました。 Aでは、Pは直線状の点、 Bでは、PQが垂線なので、法線ベクトルでもいいではないか?と考えて、x+y-zの法線ベクトルを1.1.-1とおいて外にKを置けば =(X-x、Y-y,Z-z)のイコールの関係になるのはわかりました。 Cは、PQの中点の公式より、中点の座標を求めてます。 その後、なぜだか?X+x/2 + Y+y/2 ーZ+z/2 =0とzの項ではマイナスとなっていて、(たぶんx+y-z=0に代入したと思うのですが) そこから得たこのCとは何か不明です、またなぜPQの中点をx+y-zに 代入する必要があるのですか?>_<?? 最後は なぜ、この題意の点Pが直線x=y+1=z-1 の上を動くとき点Qの描く図形の方程式を求める際に、 このA,B,Cを使って、消去すれば題意の求めてる回答が得られるのでしょうか??なぜ、これらをあわせると回答が得られるのかわかりませんでした。 どなたか教えて下さい、宜しくお願いします!!>_<!! 線積分の問題 P=(1,0)を始点、Q=(-1,0)を終点とする曲線Cを次のように取る時それぞれの線積分 ∫_c{(x^2+y^2)dx+xdy} の値を求めよ。 (1)Cは原点中心、半径1の上半円 この問題ですが、x=cosθ y=sinθ として解いたのですが、答えがπ/2-2になるのです。回答を見るとπ/2とかいてあるのですが。やはりπ/2なのでしょうか? また、次は重積分なのですが 球x^2+y^2+z^2≦a^2と円柱x^2+y^2≦axの共通部分の体積を求めるとき、自分はV=2∬_D (a^2-x^2-y^2)dxdy D={(x、y)|x^2+y^2≦ax}として解いたのですが、答えが違うのです。自分は2πa^3/3となるのですが。解答は、2/3(π―4/3)a^3なのです。 きちんと、曲座標に直して解いたのですが。解答は(5)=4∬_D(a^2-x^2-y^2)dxdy D={(x、y)|y≧0,x^2+y^2≦ax}として解いていました。 解説お願いします。 次の関数論の問題の解答解説をお願いします。 全領域で正則な関数f(z)=u(x,y)+iv(x,y)について(z=x+iyでx,y,u(x,y),v(x,y)は実数である), 1.z平面上の任意の閉曲線Cに沿ってのf(z)の1周積分は常に0になることを証明せよ。 2.z平面上の任意の点Aから点Bまでのf(z)の複素積分が積分経路に依存しないことを証明せよ。 この問題どなたかよろしくお願いします。 1.外微分に関する計算で d{(x+y^2+xz)dx^2} を計算せよ。 2.f(x,y)=x^2+2y^2-2xy+x-3y の極値(最大値、最小値、停留値)を与える可能性のあるx,yの組を求めよ。 またそれらの点におけるヘッセ行列を計算し、その点が極大、極小、停留のうちどれになっているかを判定せよ。 3.次の線積分の値を計算せよ。 Cを(0,0)から(2,2)に向かう曲線として ∫_C 2xy^3dx+3x^2 y^2dy どなたかよろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
すいません。 スカラー場 φ=x^2+y^2+z^2の次の曲線Cに沿う線積分∫c Φdsを求めよ ・Cは点P(-1,0,0)からQ(1,0,2)へ至る線分