締切済み 同じ数学的手法で解ける現象 2012/05/23 17:23 LCR直列回路と逐次崩壊は同じ二次線形常微分方程式ですが、そのような同じ数学的手法で解ける異なる現象の組にはどのようなものがありますか? みんなの回答 (2) 専門家の回答 みんなの回答 onahosuki ベストアンサー率0% (0/0) 2012/05/27 22:29 回答No.2 お前エネ科だろ? 通報する ありがとう 0 広告を見て他の回答を表示する(1) wata717 ベストアンサー率44% (72/161) 2012/05/24 09:17 回答No.1 L. Brillouin "Wave propagation in periodic structures"(1946) DOVER を御覧ください。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A これらの数学はいつ習うのでしょうか? これらの数学は高校でならうのでしょうか? それとも大学でならうのでしょうか? 積分因子 階数低減法 定数係数2階線形方程式 1階線型常微分方程式 よろしくお願いいたします。 最適化手法について 非線形方程式の最適化手法に様々な解法が、あると思いますが、「準ニュートン法」について、詳しくかつ簡単に 教えて頂けないでしょうか?微分や行列等が混在してきて なぜ、そうなのか?と頭をかかえてしまいます。 目的関数として、「平面方程式」を例に説明していただけると助かります。 宜しくお願いします。 過渡現象 R-C回路の過渡現象についてなんですが、式をどのようにして作成しどのように解くのかがいまいち不明です。 回路は電源にR1が直列につながり、その後R2とCが並列につながっているという回路です。 この状態で電流を流したときのR1にかかる電流をi(t)として微分方程式で解けという問題なのですが、式を作ることが出来ません・・・ CがRだったとしたら何も迷うことはないのですが、コンデンサ・微分方程式と厄介なものが出てきたため混乱しています・・・ 分かる方がいましたら教えてください。よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 機械工学と数学 機械工学で特に重要な数学は何ですか? 【微積分/線形代数/ベクトル解析/フーリエ級数/ラプラス変換/偏微分方程式/常微分方程式/複素解析】 LCRの過渡現象 LCR回路についてですが、LCR放電回路にみられる過渡現象の特徴を詳しく教えて下さい。 また、LCR直流回路とLCR交流回路の過渡現象の特徴も教えて頂き、LCR放電回路との過渡現象の違いについても教えて下さい。 回路に詳しい方、または専門家でも良いので、ぜひ回答をお願いします。 2階線形微分方程式は縮退は2まで? 数学カテゴリで質問すべきか迷ったんですが、ここで質問させてください。一次元シュレーディンガー方程式などの2階線形常微分方程式では解の縮退は最大で2である、とあるんですがなぜでしょうか? 2階線形常微分方程式は二つの独立解の線形結合で表せるから、などと聞きましたが、どうも理解できません…よろしくお願いします! (補足質問:2階線形常微分方程式は二つの独立解の線形結合で表せる、というのは積分定数が2つ出るから、と記憶してます。ということは、2階線形常微分方程式の解は常に二つの基底で展開できるということですよね?) 数学科で勉強する手順 今年4月から数学科に入学する、数学教師を志す者です。 なんせ4月まで時間があるので、この間はやく身につけたいです。 この質問をするまでとりあえず命題論理や述語論理など、大学で学ぶ上で最低限必要な数学言語の本を読みました。 数学にはおおまかに3つに分けられていると言われていますが、実際勉強し始めるとなると、偏微分方程式、常微分方程式、統計学、複素関数、微分積分、線形数学、ベクトル解析などと、本屋に行くとさまざまな分野に分かれているとわかりました。 そこで質問なんですが、どのような順番でこれらを勉強すればよろしいのでしょうか。 例えば私は今IIICの知識しかないのですが、この予備知識から理解できるような手順を教えてください。 例えば (1)微分積分→(2)線形数学→(3)・・・・・ という感じでお願いします。 余裕がありましたらわかりやすいおすすめの本を教えてください。(私は理解力がある方ではありません) 微分方程式 線形 非線形 微分方程式における線形と非線形について質問させて頂きます。 線形と非線形では何が違うのでしょうか? 1階線形常微分方程式が線形なのはわかるのですが、2階線形常微分方程式は 2階なのになぜ線形なのでしょうか? また、∇は後ろに関数を持ってきて1階の偏微分という演算を行います。 これは線形なのでしょうか? Δ(ラプラシアン)は後ろに関数をもってきて2階の偏微分という演算を行います。 ラプラス方程式やポアソン方程式も線形なのでしょうか? 線形微分方程式の問題に関していくつか当たったのですが、線形なのか非線形なのか がどのように使い分けられるのかわかりません・・・ 以上、ご回答よろしくお願い致します。 数学の参考書を探しています。 いま、理工系の学部に進学し勉強をしているのですが… それで…なぜか今の数学の先生は指示する参考書(教科書)がなく…教科書なしで授業を進め…チンプンカンプンです。 そこで、参考書を自分で買おうと思うのですが…このシラバスからいくとどういう参考書がお勧めですか??お願いします。 連立線型微分方程式とは 行列の指数関数 行列の対角化 対角化による連立線型微分方程式の解法 射影 行列のスペクトル分解 スペクトル分解による連立線型微分方程式の解法 多変数関数の微分可能性 全微分と偏微分 多変数関数の微分計算 陰関数 多変数関数の極値 AI時代と数学力 今後のAI時代で数学力は鍛えておいた方がいいですか?数学は苦手ではありませんが、仕事の関係でたまに勉強しています。大学の数学の講義では、微積分、線形代数、常微分方程式、ラプラス変換、複素関数、フーリエ解析などを学びました。個人的に好きだったのはラプラス変換です。 物理数学の参考書について こんにちは。私は物理数学を学ぼうと思っています。その際、分野別(例えば、線形代数、常微分方程式、複素関数など)の本を一冊ずつこなすのが良いでしょうか。それとも、物理数学と銘打った本を学ぶのが良いでしょうか。また、物理数学と銘打った本を学ぶには、どのくらいの予備知識が必要でしょうか。ちなみに、物理学科2年終了程度の力をつけたいと思っています。よろしくお願いします。 LC回路の過渡現象について LC直列回路についてです。電源は直流源E、回路に流れる電流をi(t),コンデンサに流れる電圧をv(t)とします。 この回路のi(t)についての回路方程式をたてたところ、以下の方程式になりました。 L*i"(t)+i(t)/C=E (ここでi"(t)はi(t)の二階微分とします) ここから{i(0)=0,v(0)=0}の条件を用いて微分方程式を解きたいのですが、i'(0)の値が分からないので、完全に解くことが出来なくなりました。おそらく、v(0)=0の条件をうまく変形すればでるのかと思われますが、うまく行きませんでした。 どうすればよいでしょうか。アドバイスをお願いします。 大学院の入試(数学)の勉強について 大学院の入試(数学)の勉強について 私は今、大学3年生で食品系の学科(生化学が中心)にいるのですが、大学院の独立研究科の物理化学の分野に進学しようと考えています。 そこの入試に出る数学について、どのように勉強するべきか悩んでいます。 大学受験の時は数学II・Bまでしか受けず、大学のカリキュラムでは微分積分、線形代数を少しかじった程度です。どちらかというと数学の知識は疎いです。 入試の出題範囲は線形代数、微分積分学、ベクトル解析、線形常微分方程式、複素積分となっています。 勉強していくにあたって、まずはあやふやな高校数学から始めるべきだと考えております。高校の教科書が理解できれば、大学教養レベルに進んでも問題ないでしょうか? また数学の勉強にお勧めな書籍があったら教えていただけると助かります。 努力で数学をものにしたい。。。 理系大学3年です。 数学は才能でしょうか。努力で克服できないでしょうか。 僕は数学があまり出来ません。3年にもなって線型代数を勉強しています。微分方程式も解くことが出来ません。 自分の数学力は理工系の入門コースがぎりぎり理解できるくらいです(微分方程式は理解できませんでした)。卒論でやろうと思った分野の参考書を見ても,この程度の数学力ではさっぱりわかりませんでした。 微分方程式がある程度できれば,どうにかなりそうな気がしましたが,まだまだ実力不足です。 理系にもかかわらず,数学の授業が全講義中2つ(微積と線型代数)しかない大学で,聞ける先生もおらず(非常勤講師が講義担当なので),当然学生もおらず,まったくの独学をしなければいけないのですが,数学を並みの理系学生程度,もしくはそれ以上に扱えるようになりたいです。 数学の勉強は毎日欠かさないのですが,今は本を読んでもほとんどわからないことも少なくなくとても苦痛です。 もっと易しい参考書もあるにはありますが,それをやったところで次のステップに向かえるかも疑問です。 たぶん皆さんはこういった経験は少ないのだと思いますが,なにかアドバイスをいただければありがたいです。お願いします。 数学検定 数学検定についてお聞きいたします。 数検準一級は高卒レベル、正一級は大卒レベルといわれていますが、みなさんはどの級を取得されていますか? 正一級を取得したいのですが大学時代に教養課程でやった「微分積分」と「線形代数」「微分方程式」を復習すれば合格できるでしょうか? 古典物理学各分野に必要な数学について 理工系大学1年の者です。古典物理学各分野に必要な数学が分からず困っています。物理学に必要でない数学はないそうなのですが、古典物理学入門のレベルで古典物理学各分野(力学・波動と光・熱力学・電磁気学)を学ぶ前に勉強した方が良い必要な数学とは何なんでしょうか?自分なりに物理数学の本の内容などを調べてみると、微分積分・線形代数学(ベクトルと行列)・ベクトル解析・常微分方程式・偏微分方程式・複素解析・フーリエ級数・フーリエ変換・ラプラス変換というものが必要だとまでは分かりました。ですが、それぞれどの分野で必要となる数学分野なのかが分かりません。(例えば力学にはあれが必要で、電磁気学にはあれが必要で・・・という感じで)。また微分方程式を学ぶ前に、微分積分と線形代数学の勉強が必要であるらしいなど、各数学分野で必要とされる他の数学の分野の予備知識や、それによって決まる数学を勉強する順序が分かりません。 ですので、私のように入門レベルでまず必要な数学、「力学は・・・、電磁気学は・・・を前もって勉強した方が良い」、また「予備知識、それに伴う数学の勉強の順序は・・→・・→・・」といった感じでアドバイスをお願いします。また私が何か勘違いをもししていたら、その指摘もお願いします。 よろしくお願いします。 線形2階微分方程式と非線形2階微分方程式の違いは? 数学用語の意味の違いがいまいちつかめません。 (1)【線形2階微分方程式】 未知数y(x)とその導関数y'(x),y''(x)についての線形の微分方程式 y''+p(x)y'+q(x)y=f(x) を 2階線形微分方程式という.最も簡単な例として d^2f(x)/dx^2=0 がある。 (2)【非線形2階微分方程式】 非線形2階微分方程式の定義がテキストには載っていなかったのですが、 y''+p(x)y'+q(x)y ノットイコール f(x) が非線形2階微分方程式ということでしょうか? (1)と(2)の違いがどこにあるのか、はっきりせずにモヤモヤしているので、 スッキリさせたいです。どなたか数学に詳しい方がいらっしゃれば、 どうかご教授下さい。よろしくお願いします。 大学数学について 今年理学部数学科に入学する者です。 大学1年次での数学とは主になにをするのでしょうか? 微積分と線形(線型)代数は必ずやるということくらいしか知らないのですが・・・ あと微積分や線形代数でいい参考書や演習本とかないでしょうか? 基礎から発展的なものまで網羅されてるものは少ないとは思いますが 数学科であるからにはただ単位を取るだけの暗記型の勉強はしたくないです。 大学生活を浪費しないためにも良い本と出会って数学に没頭したいので・・・ 一応自分で調べたものは 「線形代数マスター30題 加藤 明史」「単位がとれる線形代数・微積・微分方程式」「線形代数入門・演習 齋藤 正彦」です これ以外でも結構ですし上記の本に対しての意見でもかまいません。 長文になってしまい申し訳ありません。 どなたか回答よろしくお願い致しします。 非線形微分方程式の問題です 非線形微分方程式について質問です。 とある大学院試験の数学の問題で次のような問題がありました。 y = dy/dx (x) + 4(dy/dx)^2 この微分方程式は (dy/dx)^2 の項があり、非線形微分方式です。 非線形微分方程式は解を求めるのが大変難しいだけでなく、解が求められないものもたくさん存在します。 私はこの問を解けませんでした。 解くことは可能なのでしょうか。 お願いします。 大学数学で必要な数学を扱ってるサイトしりませんか?? タイトル通りです。 微分積分・線形代数・微分方程式などを扱ってるサイトお願いします。できれば、^とか*とかの記号使ってないヤツがいいです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 タイヤ交換 アプローチしすぎ? コロナの予防接種の回数 日本が世界に誇れるものは富士山だけ? AT車 Pレンジとサイドブレーキ更にフットブレーキ 奢りたくありませんがそうもいかないのでしょうか 臨月の妻がいるのに… 電車の乗り換え おすすめのかっこいい曲教えてください! カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など