- ベストアンサー
確率の問題です。
確率の問題です。 1から5までの番号が1つずつ書かれた5枚の赤色のカードと、1から5までの番号が1つずつ書かれた5枚の白色のカードと、1から5までの番号が1つずつ書かれた5枚の青色のカードがある。これら15枚のカードをよくかきまぜた後、3枚のカードを取り出す。 (1)3枚とも赤色のカードである確率は(1)である。 (2)赤色、白色、青色のカードが1枚ずつある確率は(2)である。 (3)赤色、白色、青色のカードが1枚ずつあり、かつ3枚のカードの数字が異なっている確率は(3)である。 (4)3枚のカードの数字の積が5の倍数である確率は(4)である。 (5)3枚のカードの数字の積が9の倍数である確率は(5)である。 (1)~(5)にあてはまるものを答えてください。 途中式は不要で、答えだけで大丈夫です。 お願いします^^
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
答えだけ言葉で答えるよ。 (1) (任意数の赤, 任意数の赤, 任意数の赤) のパターン / 全てのパターン (2) (任意数の赤, 任意数の白, 任意数の青) のパターン / 全てのパターン (3) (任意数の赤, 赤の数でない白, 赤の数や白の数でない青) のパターン / 全てのパターン (4) ( 5の任意色, 任意数の任意色, 任意数の任意色) / 全てのパターン (5) ( 3の任意色, 3の任意色, 任意数の任意色) / 全てのパターン ※ただし、同じカードは選ばないこと。
その他の回答 (1)
- edomin7777
- ベストアンサー率40% (711/1750)
自分の考えを全く示さず、 > 途中式は不要で、答えだけで大丈夫です。 と書かれたら、大多数の人は「何いってんだ、こいつ…?」となります。 ・宿題は自分でやれ。 ・判らないところは、教師に聞け。 ※そのための教師である。
補足
誤解されるような質問の仕方をしてすみません;; 宿題じゃないんです・・・ あと、1回自分でもときました;; そのうえで質問しています。
補足
ありがとうございます^^ わたしは (1)2/91 (2)25/95 (3)12/91 (4)47/91 (5)13/455 となったんですが、(5)が間違ってるのはわかってて、(1)~(4)があってるか確かめたかったんです^^ありがとうございました。