- ベストアンサー
平行軸の定理について
平行軸の定理の証明が教科書に載っていましたが、難しくてよくわかりませんでした。 できるだけわかりやすく解説していただけると助かります。
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
簡単のために回転軸、重心、質点(質量m)が直線状にあるとして添付図のような図を書きます。 慣性モーメントは(質量)×(回転軸からの距離の二乗)なので、図の回転軸まわりの慣性モーメントは mX^2 = m(x+d)^2 = mx^2 + md^2 + 2mxd となりますが、全ての質点について和を取ると重心の定義からΣmxが0になるので、最後の2mxdが和を取ることで0になり、 I = Σmx^2 + (Σm)d^2 になるということです。第一項のΣmx^2は慣性モーメントの定義から重心まわりの慣性モーメントIG, Σmは剛体全体の質量Mになるので I = IG + Md^2 教科書の証明はこれを一般化しているだけです。
その他の回答 (2)
- hitokotonusi
- ベストアンサー率52% (571/1086)
回答No.3
簡単のため一次元の質点系なり剛体で考えることにして、重心の座標Rxは、その定義から Rx = Σmx / Σm 和は質点系なり剛体を構成する全ての質点について取ります。 ANo.2の添付図のx(小文字)は重心を原点とした時の質点の座標。 したがって重心が原点にあるので Rx =0 この二つの関係から Σmx = 0 が導かれます。 これを二次元、三次元に拡張するのは同じ計算をy成分、z成分についても行なうだけです。
お礼
どうもありがとうございました!
補足
>>全ての質点について和を取ると重心の定義からΣmxが0になるので 大体理解できましたが、ここの部分がよくわからないので教えていただけませんか。