• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:コンデンサの片側板の電荷分布 / 球状導体の分極)

コンデンサの片側板の電荷分布 / 球状導体の分極

このQ&Aのポイント
  • コンデンサの片側板の電荷分布について詳しく調べました。最前線の表面から離れるにつれてプラス電荷の密度は低くなるようですが、連続した導電体の電位が等しい原則に反する点についても考えています。
  • 導体の球が外部から電場を与えられて分極すると、表面がプラスに帯電し、負の電荷は中心に存在すると考えられます。ただし、この点を数式で証明する方法について悩んでいます。
  • コンデンサの極板や球状導体の分極に関する質問をまとめました。電荷分布や電位の変化について考える中で、導体全体の電位が等しいという原則に疑問を抱いています。

質問者が選んだベストアンサー

  • ベストアンサー
  • heboiboro
  • ベストアンサー率66% (60/90)
回答No.5

> このリンクのように、いわゆる球状コンデンサーというものが典型問題としてよく出されるようです。 > この球状コンデンサの状況と、回答者様の想定されている状況の違いが理解できずにおります。 >http://butsuri.fc2web.com/electro/1-06.html すいません、少し言葉が足りなかったみたいです。 「球全体に均等に電場をかけることができない」と書いたのは、球の表面及び内部にある総電荷がゼロの場合のことです(重要な条件なのに、これを書き忘れていました)。 お示しいただいたURLの球殻はどちらも帯電していますので、均等に電場がかかりえます。 ここで、もしかしたら、「外から電場をかけることを考えるだけなら、球内に電荷があるかは関係ないのではないか?」とお考えになるかもしれません。 これはある意味では正しいです、というのは、同心球コンデンサの内側球殻に外からかかっているように見える電場は、実際は外側球殻が内側球殻を引っ張っているのではなく、内側の球殻自身が持つ電荷により生じている電場だからです。 同心球コンデンサの作る電場を、外側の球殻によるものと内側の球殻によるものに分けて考えてみましょう。 外側球殻は外側球殻の外側にしか電場を作らず、内側球殻も内側球殻の外側にしか電場を作りません。 外側球殻の外側ではこの二つの電場が打ち消しあい消えてしまって、内側球殻と外側球殻の間の部分にだけ、内側球殻の電荷により発生した電場が、残ります。 こう考えると、内側球殻にかかっている電場は内側球殻自身により発生したものであり、もし内側球殻が帯電していなかったら、内側球殻に電場がかからないことが分かると思います。 このように、球表面に均等に電場がかかるときというのは、その電場は必ずその球の持つ電荷から生じています。 ですから、電荷がない場合は、球表面にいたるところ同じ方向に電場がかかる、ということはありえません。 > 『電気力線を考えれば分かりやすいですが、電気力線は電荷がないところで途切れないので、全方向から電気力線が入ってきたら中で行き詰まってしまいます。』 > すみません。これについてもう少々議論を頂けないかと思います。 > 回答者様の仰っている状況がイメージできず、もう少々ご説明頂ければと思いますが、いかがでしょうか。 実はイメージを説明するのは苦手で;;分かりづらくなっていたかもしれません。 えっと、結局はガウスの法則と同じです。球表面に(たとえ一様でなくても)どこも内向きに電場がかかっているなら、必ず球内部にそれ相応の電荷がなければなりません。 私が言いたかったのは、球表面(絵に描くなら円でいいですが)のいたるところで内側を向いていながらも「電荷のないところで途切れない」という性質を満たすような電気力線は決して作図できない、ということです。 (球内部の電荷分布がいたるところゼロの状態を考えています) > プラス電荷が生じている、すぐ次の層に負電荷を配置することで、内部に電場が生じない状況をつくることができそうですが、 > いかがでしょうか。「すぐ次の層」という曖昧な表現で恐縮ですが、電気二重層のような状況とお考え頂ければと思いますが、この考えではいかがでしょうか。 これは、多分駄目だと思います。 まず、電荷分布が同心球コンデンサと同じなので(電荷密度が角度方向に一様とした場合の話ですが)、結局この電荷分布の作る電場は二つの層の間の微小厚さの領域だけにしか存在しませんね。 これでは、外からの電場を打ち消すという役目を果たすことは叶いません。 もう一つ、いまは同心球コンデンサの場合と異なり、内側の薄膜上の負電荷を繋ぎとめておく力がないので、微小距離だけ離れて留まっていることはなく、正電荷にくっついてしまいます(正確に言えば、外側の正電荷球殻により内側に生じる電場はゼロなので、これは正電荷からの力ではなく、負電荷同士の反発力によります)。

jeccl
質問者

お礼

再び回答頂きましてありがとう御座います。とても真実に近づいてきた感覚があるのですが、私の理解が正しいかどうか不安でして、以下で確認頂けないでしょうか。 『外側球殻は外側球殻の外側にしか電場を作らず』 これについて。内側球を無視して、外側球殻に注目します。すると、外側球殻の内側においては、任意の点において、球の対象性から電場は打ち消され、ゼロになる。ということでしょうか。また、外側球殻の内側においては、任意のガウス表面をとったところで、そのガウス面内に電荷が無いため(今、内側球は無視しておりますため)、どこにも電場は生じ得ない、とも理解できますが。いかがでしょうか。ちなみに、新たな質問となり恐縮ですが、ガウス面を使わず、球の対象性から電場は打ち消されゼロになるということは数式的に証明できるのでしょうか。 また、これは私の大元の質問の前半(1)に通じるお話ですが、外側球殻について、殻の厚みがあるとお考えください。 電荷は殻の内側壁にのみ存在し、外側壁には存在しないということでよろしいでしょうか。つまり、コンデンサーの充電において、外側球殻に注入された電荷は、その内側壁のみに存在することになる、という理解は正しいでしょうか。外側球殻の内側壁、外側球殻の外側壁というのはかなりややこしい表現ですが、たとえば外側球殻がみかんの皮だと想定してください。内側壁というのは色が白の裏の部分で、外側壁というのは色がオレンジの表側の部分です。もしこれが正しいとすると、平行平板コンデンサにおいても、注入された電荷は二枚の板の間の面、つまり対面している側にしか存在しないということでよいでしょうか。うーん、しかしすると、各板を個別に考えた場合、各板は導体なのに、導体内部に電場が存在することになってしまいます・・・。 『内側球殻も内側球殻の外側にしか電場を作りません。』 これは、内側球殻の内側では、球の対称性から電場が打ち消されるという解釈でしょうか。 以上、確認、そして新たな質問までしてしまい、申し訳ないのですが、今一度お付き合いいただければと思います。 どうか宜しくお願いします。

その他の回答 (5)

  • heboiboro
  • ベストアンサー率66% (60/90)
回答No.6

> 内側球を無視して、外側球殻に注目します。すると、外側球殻の内側においては、任意の点において、球の対象性から電場は打ち消され、ゼロになる。ということでしょうか。 対称性だけからは言えないと思います。 対称性からは、電場はrだけの関数で書けてかつ動径方向を向いたベクトル場である、ということしか言えません。 対称性とガウスの法則を組み合わせて示すのが一般的だと思います。 (先ほどのURLでも、「球の間以外ではガウスの法則により電場はゼロになる」と書いてありますね)。 > 外側球殻について、殻の厚みがあるとお考えください。電荷は殻の内側壁にのみ存在し、外側壁には存在しないということでよろしいでしょうか。 内側球殻が外側球殻と同量反符号だけ帯電しているときには、正しいです。簡単に言えば、内側球殻の電荷から引力を感じるからです。 もし内側球殻が帯電していないならば、反対に球殻の外側壁のみに電荷が存在します。これも電荷間の反発でイメージできると思います。 いずれにしろ、球殻導体の内部(球の内部という意味ではなくて、厚みのある導体の内部です)で電場がゼロになるように、というルールから配置が決まっていると考えてください。 それぞれの配置のときにどういう電場ができるか?というのは、厚みの無視できる同心球コンデンサの場合と同じように計算できるので、色々考えてみてください。 > もしこれが正しいとすると、平行平板コンデンサにおいても、注入された電荷は二枚の板の間の面、つまり対面している側にしか存在しないということでよいでしょうか。 よいです。 > うーん、しかしすると、各板を個別に考えた場合、各板は導体なのに、導体内部に電場が存在することになってしまいます・・・。 これは違います。 むしろ、対面する面にそれぞれ電荷が集まることで、うまく相手の導体からの電場を打ち消して、厚みのある導体内部には電場が生じなくなります。 平行平板コンデンサの外側では電場はゼロ、というのと全く同じです(というかそのままですが)。向かい合っている側の面に電荷が集まっていたら、それより外側には電場は生じません。 ちなみに、ご質問の画像に書いてあるとおり、このときの極板が持つ電荷は電池から(あるいは近接した導線から)来たものと考えていいと思います。

jeccl
質問者

お礼

すみません大変重要な回答を頂いたにもかかわらず、お礼が遅くなってしまいました。 大変勉強になりました。 宜しくお願い致します。

  • Quarks
  • ベストアンサー率78% (248/317)
回答No.4

ANo.2です。 >これについて、他の回答者様にもお伝えしたのですが、果たして中心に集まる >のでしょうか。外側はプラスに分極しているとして、そして負電荷が中心に集 >まった場合、導体球の内部に電場が生じてしまいます。この中心の負電荷を含 >み、半径が導体球より小さい(表面のプラス電荷を含まないという意味ですが) >任意のガウス面をお考え下さい。どのガウス面からも電気力線が出てしまい、 >すなわち電場が生じていると解釈できます。いかがでしょうか。 スミマセン、そのとおりです。 もう既に解決しているようですが、私の書いた 内容は、上の件については全くの誤りでした。 ANo.3さんも書いておられるとおり、導体球の内部には電荷は存在していませんね。

jeccl
質問者

お礼

お返事を頂きありがとう御座います。確認して頂き助かりました。 今後とも宜しくお願いします。

  • heboiboro
  • ベストアンサー率66% (60/90)
回答No.3

後半なんですが、(少なくとも理想的な導体を考えている限り)中心に電荷が溜まる、というのはまずいです。 明らかに、そうすると導体内に電場が生じてしまうからです。 静的な状態では導体内に電場はありません。 そもそも、球表面に均等に電場をかけることはできません。 電気力線を考えれば分かりやすいですが、電気力線は電荷がないところで途切れないので、全方向から電気力線が入ってきたら中で行き詰まってしまいます。 たとえばその球を、負に帯電したさらに大きな球殻で囲んでも、ご承知のように球殻内部の電場はいたるところゼロですので、不可能です。 球殻を歪めても駄目です。 そうではなくて、球表面の一部に負電荷を近付けたとします。 すると当然、その近くの表面には正電荷が現れます。 しかし同時に、その反対側の表面に負電荷が現れることで、プラマイゼロになります。 結局、静的状態において導体球中心にゼロでない電荷が溜まっていることはありません。

jeccl
質問者

お礼

heboiboro様、回答頂きありがとう御座います。 追加で議論頂きたいことが御座いまして、どうか以下をお読み頂ければ幸いです。 『後半なんですが、(少なくとも理想的な導体を考えている限り)中心に電荷が溜まる、というのはまずいです。 明らかに、そうすると導体内に電場が生じてしまうからです。』 鋭いです。とても勉強になります。そして、確かに中心に電荷がたまる状況では電場がいたるところに生じてしまいます。これは盲点でした。この電荷を有する中心を囲むガウス面を考えれば、確かに電場が生じてしまいます。 『そもそも、球表面に均等に電場をかけることはできません。』 『たとえばその球を、負に帯電したさらに大きな球殻で囲んでも、ご承知のように球殻内部の電場はいたるところゼロですので、不可能です。』 なんと、これも盲点でした。仰られて、今、気付きました。ありがとう御座います。 『電気力線を考えれば分かりやすいですが、電気力線は電荷がないところで途切れないので、全方向から電気力線が入ってきたら中で行き詰まってしまいます。』 すみません。これについてもう少々議論を頂けないかと思います。 回答者様の仰っている状況がイメージできず、もう少々ご説明頂ければと思いますが、いかがでしょうか。 『全方向から電気力線が入ってきたら』とのことですが、この電気力線の源はどれでしょうか。 ところで、もし導体球表面をプラスに分極することができたとして、負電荷は中心に置けない、としたら、 プラス電荷が生じている、すぐ次の層に負電荷を配置することで、内部に電場が生じない状況をつくることができそうですが、 いかがでしょうか。「すぐ次の層」という曖昧な表現で恐縮ですが、電気二重層のような状況とお考え頂ければと思いますが、この考えではいかがでしょうか。 どうぞ宜しくお願いします。

jeccl
質問者

補足

『そもそも、球表面に均等に電場をかけることはできません。』 『たとえばその球を、負に帯電したさらに大きな球殻で囲んでも、ご承知のように球殻内部の電場はいたるところゼロですので、不可能です。』 について、納得していたのですが、 このリンクのように、いわゆる球状コンデンサーというものが典型問題としてよく出されるようです。 この球状コンデンサの状況と、回答者様の想定されている状況の違いが理解できずにおります。 http://butsuri.fc2web.com/electro/1-06.html いかがでしょうか。 宜しくお願いします。

  • Quarks
  • ベストアンサー率78% (248/317)
回答No.2

後半について。   たとえば、導体球に負に帯電した物体を近づけ(電場を掛けた)、導体球に手を触れて負の電荷を逃がしてから手を離し、帯電物体も離した。こうすれば、導体球は、表面に正電荷を持った状態になります。 これはまさに、帯電した状態です。このような事態を言っているのではありませんか?   そうではなく、導体球の外側に 負に帯電した球殻を持ってくるようにして電場を掛けたとすると、質問者さんが想定しているような状況になることでしょう。この場合の、(外部に逃げることができずに、導体球の内部に押しやられた)負電荷の行方ですが、中心の1点に集中していると考えることになるでしょう。   中心の、大きさのない、まさに"点"に電荷がある状態とはどんな状態なのか? 物体は原子からなるので、中心にある原子が一手に全負電荷を担うことになるのでしょうか? それは無理なことです。原子よりは大きいだろうような、或る半径以内の有限な体積の空間内に、負電荷が集中している状態が実情です。では、その限定された空間内には電位差が生じているのか? そのとおりです。電位差によって原子の構成粒子は力を受けていることでしょう。それではなぜ動かないのか? 電場内で電荷が電気力を受けて動くというとき、自由な電荷を前提にしていたことを思い出しましょう。陽子にせよ電子にせよ、物体内部にあっては、完全に自由とは言えません。電気力以外の力も受けて、"釣り合い"の状態を保っているはずなのです。 このようなことは、静電場を考えるときには"余計な"事情なので、中心の1点に負電荷が集中している状態を想像するだけなのです。    導体球・導体板の表面に負電荷(または正電荷)が集中している場合も、似たような状況に在ると考えた方が良いでしょう。   ちなみに、導体とは、理想的には∞のキャリヤを持つ物体とされていますが、現実の金属などの導体では、全原子が持つ全電子の電荷の総量以上のキャリヤは存在しませんから、とてつもない巨大な電場を掛けたときには、金属と言えども、内部の電場を0にすることはできないこともあるはずです。まあ、そんな強力な電場って、作れないのではないかと思いますけどね。

jeccl
質問者

お礼

回答いただきましてありがとう御座います。 『導体球の外側に 負に帯電した球殻を持ってくるようにして電場を掛けたとすると』 その通りで御座います。これが私が質問している内容の状況です。 『質問者さんが想定しているような状況になることでしょう。この場合の、(外部に逃げることができずに、導体球の内部に押しやられた)負電荷の行方ですが、中心の1点に集中していると考えることになるでしょう。』 これについて、他の回答者様にもお伝えしたのですが、果たして中心に集まるのでしょうか。外側はプラスに分極しているとして、そして負電荷が中心に集まった場合、導体球の内部に電場が生じてしまいます。この中心の負電荷をを含み、半径が導体球より小さい(表面のプラス電荷を含まないという意味ですが)任意のガウス面をお考え下さい。どのガウス面からも電気力線が出てしまい、すなわち電場が生じていると解釈できます。いかがでしょうか。

  • semikuma
  • ベストアンサー率62% (156/251)
回答No.1

1) 物質の中には電子がうじゃうじゃいて、その電子分布がほんの少し偏ることで電荷が生じることを忘れないでください。 物質に電界を印加すると、電子分布に偏りが生じて、電界を緩和しようとします。 誘電体の場合は電子が移動できる範囲が限られているので物質内部に電界が残りますが、金属の場合は自由電子が文字通り自由に動けるので、電子1個の層で完全に電界を緩和します。 だから連続した導電体の電位はどこも等しくなります。 従って答えは、電荷は電極の極表面に集中しており、その厚さは電子軌道1個分程度と思います。 面内分布は、印加した電界強度に応じて増減します。 2) 「『電界により』金属表面を帯電させる」という状況が理解できません。 まあ、無理やり周囲に負電極を並べて電界を印加したとしても、あなたが言う「分極」が生じるだけで、電界を取り去れば電荷が元に戻るので、これは「帯電」とは言わないでしょう。 もしこの状況を言っているのなら、余分な電子は金属球の中心に集まることになります。 本当に帯電させたいなら、この中心に集まった電子を取り除いてやる必要があります。

jeccl
質問者

お礼

回答ありがとう御座います。 2)について、おっしゃるとおり、「分極」、とお考え下さい。球体を分極することが現実的に可能かどうか、は別として、思考実験として、可能であるとお考え下さい。その場合、余分な電子は、中心に集まるのでしょうか。外側はプラスに分極しているとして、そして負電荷が中心に集まった場合、導体球の内部に電場が生じてしまいます。この中心の負電荷をを含み、半径が導体球より小さい(表面のプラス電荷を含まないという意味ですが)任意のガウス面をお考え下さい。どのガウス面からも電気力線が出てしまい、すなわち電場が生じていると解釈できます。いかがでしょうか。

関連するQ&A