ベストアンサー またまた数学です 2011/11/03 12:16 次の命題の逆、裏、対偶を述べ、それぞれ真偽(逆、裏、対偶)を求めよ。 また、偽の場合は反例を挙げよ。 (1)X²=Y² ⇒ X=Y (2)「X≧1かつY≧2」 ⇒ X+Y≧3 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー under12 ベストアンサー率12% (202/1670) 2011/11/03 12:47 回答No.1 「またまた」じゃなくて、教科書を読め。 ここは計算機ではありません。 質問者 補足 2011/11/03 14:07 あの、すいません。 これでも何時間も教科書、参考書を見てるのですが いまいちわからないのです。ちゃんと考えてますよ!! ヒントだけでもいいので、教えてもらってはダメなんでしょうか? 個人の自由ですし。 まあ、ばかな私が悪いんでしょうけど(^v^) すいません。もっと考えて考えて考えてわからなかったらにします 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学なんですが(T_T) 次の命題の逆、裏、対偶を述べ、その真偽を答えよ。また、偽の場合は、 反例を(逆、裏、対偶)答えよ。 (1)X²=Y² ⇒ X=Y (2)「X≧1かつY≧2」 ⇒ X+Y≧3 逆、裏、対偶を述べるのは分かったのですが、 それぞれの真偽が分かりません。 解説やヒントだけでもいいので、教えていただけないでしょうか?? 命題の真偽(逆、裏、対偶) 『𝓍, yは実数とする。𝓍 ≠ 0 → 𝓍y ≠ 0の命題の真偽を調べよ。また、その逆、裏、対偶を述べ、それらの真偽を調べよ。』次のように考えました。正解かどうか教えてくれませんか。間違いなら理由などコメントしてください。お願いします。 逆) 𝓍y ≠ 0 → 𝓍 ≠ 0 真 裏) 𝓍 = 0 → 𝓍y = 0 真 対偶)𝓍y = 0 → 𝓍 = 0. 偽(反例:y=0, 𝓍=1) したがって命題は偽である。 至急‼真偽。 命題「x+y<0⇒xまたはy<0」の逆、対偶をつくり、その真偽を言いなさい。 偽である場合には反例を挙げなさい。 【逆】 【対偶】 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 真偽 命題「x+y<0⇒xまたはy<0」の逆、対偶をつくり、その真偽を言いなさい。 偽である場合には反例を挙げなさい。 真偽判定 いつもお世話になっております。 次の命題の真偽を求め、偽である場合は反例をあげよ (1)X^2=6ならばX=√6である。 X=±√6 であるので、偽であると考えました。 (2)空間において交わらない2直線はねじれの位置にある。 ねじれとは?? 反例という意味もわかりません(逆、裏、対偶なら参考書に載っていたのですが) どのようにとけばいいのか、教えてください。 よろしくお願いします。 高1の数学の問題です? x,yは実数とする。次の命題の真偽をしらべよ。また,その逆,裏,対偶を述べ,それらの真偽をしらべよ。 xy=15⇒「x=3かつy=5」 この命題の真偽は何ですか? 次の命題の真偽は何ですか? 「x,yは実数とする.x>0ならば,あるyについてxy>0である.」 確かにy>0のyに対してこれは成り立っていると思います. しかし,この命題の対偶である 「x,yは実数とする.すべてのyについてxy≦0ならば,x≦0である.」 が偽であるような気がします. 反例:x=1,y=-1 ではやはり,最初の命題は偽なのですか? 数学です。。 次の命題の真偽を述べよ。また、偽であるとき反例をあげよ。 X²+y²=0 ⇒ x=y=0 a≠b⇒ ac≠bc xyが有理数 ⇒ x , yはともに有理数 命題 裏の真偽 数学Iで与えられた命題「xy=0 ならば x=0 かつ y=0」…(△)は偽である。 (△)の逆「x=0 かつ y=0 ならば xy=0」……真である。 (△)の裏「xy≠0 ならば x≠0 または y≠0」…真である。 (△)の裏は(△)の逆の対偶ということで真とされて参考書の答えになっていたのですが、 この(△)の裏は偽だと思います。反例 x=1,y=0のときxy=0 になってしまいます。 参考書の間違いなのか、私の考え方が間違っているのかコメントください。 命題と証明 x,yは実数とする。次の命題の真偽を調べよ。 また、その逆・裏・対偶を述べ、それらの真偽を調べよ。 (x-3)(y-6)=0ならば「x=3またはy=6」 こういった問題なのですが、ほとんど分からなくて・・・。 できれば私にも理解しやすいように 証明など詳しく書いていただけると本当に助かります。 よろしくお願いします。 次の問題を解いてください! 次の命題の真偽を調べなさい。また、その逆・裏・対偶を調べ、それらの真偽を調べなさい。ただし、nは自然数、xは実数とする。 (1)長方形は平行四辺形である。 ・真偽 ・逆 ・裏 ・対偶 (2)nは9の倍数である⇒nは3の倍数である。 ・真偽 ・逆 ・裏 ・対偶 (3)x≠2⇒x二乗-3x+2≠0 ・真偽 ・逆 ・裏 ・対偶 (4)x二乗-x=0⇒「x=0 または x=1」 ・真偽 ・逆 ・裏 ・対偶 数学です。 実数Xについての次の命題の 真偽を、集合を使って 調べなさい。 (1)x<3⇒x<-1 (2)x>2⇒x>-2 次の条件の否定を答えなさい。 (1)実数xについて[x≧-1] (2)自然数nについて [nは奇数である] 実数xについて次の命題の 逆を示し、その真偽を 調べなさい。 (1)x=3⇒xの2乗=9 (2)x>-4⇒x>-2 自然数nについての命題 「nの2乗は3の倍数でない ⇒nは3の倍数でない」に ついて、次の問いに 答えなさい。 (1)この命題の対偶を 答えなさい。 (2)対偶を利用して、 もとの命題が真である ことを証明しなさい。 解らなくて困ってます 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 逆・裏・対偶の問題で分からないのがあります。 命題「x、yがともに有理数ならばx+yは有理数である」の逆、裏、対偶を述べてください。また、それらの真偽を言ってください。 逆・裏・対偶の問題が分からないのがあります。 命題「0<x<3ならばx^2<9である」の逆、裏、対偶を述べてください。また、それらの真偽を答えてください。 集合と論証 全くわかりません。教えてください。 1 次の命題の逆をつくり、その真偽を調べなさい。 (1)nが自然数のとき nは10の倍数→nは5の倍数 逆「nが自然数のとき → 」 真偽: (2)x=6→4x=24 逆「 → 」 真偽: (3)-1<x<3→-4<x<5 逆「 → 」 真偽: (4)x=3→x2乗=9 逆「 → 」 真偽: 2 次の命題の対偶をつくりなさい。 (1)x2乗≠25→x≠-5 対偶「 → 」 (2)x<-2→x<0 対偶「 → 」 (3)nは4の倍数→nは2の倍数 対偶「 → 」 数学に関して教えてください。。。 今学校で命題と論理+逆・裏・対偶という所をやっています。 命題を論理は(真か偽)を見極めるみたいな奴です。 そこでわからない問題が一問あったんで教えてください・・・ X(二乗)=X ならば X=1 X=1 ならば X(二乗)=X X(二乗)not=X ならば X not=1 X not=1 ならば X(二乗) not=X この四つに真か偽をつける問題なんですが なぜ真になったか、なぜ偽になったらのかと 言う簡単な言葉の説明も必要なんです。 もしよければ詳しく教えてください・・・・ 命題の証明。 参考書を開いたりなどしたのですが、中々理解することが出来ません。 以下の問題の解説をしていただけないでしょうか、、 (1) |x-1|>2 または |y-2|>3 ならば、 9x^2 + 4y^2 - 18x - 16y > 11 が真であることを証明せよ。 (2) (1)の命題の逆、裏、対偶をつくり、それらの真偽を理由をつけて述べよ・ 申し訳ありませんが、よろしくお願いいたします。 なるべく高校数学の範囲内でお願いします なるべく高校数学の範囲内でお願いします ある命題Aに反例xがあったとき、xはAの対偶の反例と一致しますか? 命題 次の問題を教えていただきたいのですが。 次の命題の逆、真偽、対偶を作りそれぞれの真偽を示せ。 χ>0ならばχ^2>0 答えには 対偶:「χ^2≦0ならばχ≦0」真の命題。と書いてありました。 元の命題が真だから、元の命題と対偶の真偽は一致するので対偶も真という事は分かるのですが、具体的にいうとどういう事なのですか?「元の命題と対偶の真偽は一致する」という事からしかわからないのですか? 逆・裏・対偶の問題で分からないのがあります。 命題「(x+y≠3またはx-y≠1)ならば(x≠2またはy≠1)」の対偶を述べてください。また、もとの命題の真偽を言ってください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
あの、すいません。 これでも何時間も教科書、参考書を見てるのですが いまいちわからないのです。ちゃんと考えてますよ!! ヒントだけでもいいので、教えてもらってはダメなんでしょうか? 個人の自由ですし。 まあ、ばかな私が悪いんでしょうけど(^v^) すいません。もっと考えて考えて考えてわからなかったらにします