- ベストアンサー
2次関数の問題
F(x)=x^2ーax+a+2 G(x)=x^2ー(3+a)x+3aとする。 xのどんな実数解に対しても F(x)>0が成り立つ実数aの値の範囲は『2-2√3<a<2+√3』である。 G(x)≦0を満たすxの値の範囲は 『a<3のときa≦x≦3 3≦aのとき3≦x≦a』となる。 ここまでは分かるのですが次の問題に 『G(x)≦0であるようなどんなxの値に対してもF(x)>0となるようなaの値の範囲を求めよ』とあるのですが・・・ これの求め方の答えに 題意を満たすための条件を場合わけして書いてあります。 (1)a≦0 (2)0<a≦3 (3)3<a≦6 (4)6<a これはどぅいう基準で場合わけをしているのですか? これ以外にわかりやすい解き方があれば教えてください。 来週テストがあって困ってます... 申し訳ないのですが、早めに教えてください・・・!
- みんなの回答 (2)
- 専門家の回答
お礼
分かりました~!!! ありがとぅございます!!! とっても助かりました。 月曜にテストがあるので焦っていたところでした・・・ また困った問題があったらヨロシクお願いします。。