締切済み 三角関数の微分の導き方について誰かおしえてください。 2010/01/25 00:13 逆三角関数の微分の導き方について誰かおしえてください。 おねがいします。 詳しくお願いします (cosec^(-1)x)'=-|x|^(-1)/√(1-x^2) (-1<x<1) みんなの回答 (2) 専門家の回答 みんなの回答 info22_ ベストアンサー率67% (2650/3922) 2010/01/25 03:57 回答No.2 y=arccosec(x) x=cosec(y)=1/sin(y) sin(y)=1/x y=arcsin(1/x) y'=[1/√{1-(1/x)^2}](-1/x^2)=-1/[(x^2)√{1-(1/x)^2}] =-1/{|x|√(x^2-1)} (ただし,|x|>1) > (-1<x<1) これは 間違いですね。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 sanori ベストアンサー率48% (5664/11798) 2010/01/25 02:14 回答No.1 こんばんは。 y = cosec^(-1)x とは、つまり、 x = cosecy = 1/siny ですよね。 -1<x<1 とありますが、 1/siny はyが実数のとき1より小さくなることがないので、 たとえば、-1 < 1/x < 1 ではないかと思うのですが・・・ ちなみに、手元で計算してみたら、 ±x^(-1)/√(x^2 - 1) となりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 逆三角関数の微分 逆三角関数の微分の導き方について誰かおしえてください。 おねがいします。 詳しくお願いします (1/(sin^-1)x)'=-|x|^(-1)/√(1-x^2) (-1<x<1) 三角関数の微分 三角関数の微分について困っています。 f(x)=-Acos(Bsin(x+C))のとき、 f'(x)を求めるためにはどうすれば良いでしょうか。 三角関数の中に三角関数…。頭が痛いです。 誰か、教えて頂ければ幸いです。 よろしくお願い致します。 三角関数の微分に関して質問させてください 三角関数の微分に関して質問させてください 三角関数を微分する時分からない部分があります。お力添えしていただければ幸いです。 sin(x)*sin(x)=sin^2x sin^2(x)をxで微分すると 2*cos(x)*sin(x)となるようなのですが過程を詳しく知りたいのです。また、 sin(x)cos(x)をxで微分した場合はどのようになるのでしょうか?よろしければお教えください。 よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 三角関数の微分 三角関数の微分でわからない問題があるのですが、 y=√2sin(3x+(π/4)) わかりづらいですが、(π/4)の部分は分数です。 何故かこの問題だけπがでてきて全然わかりません。 (3x+(π/4)) ←この部分をuに置き換えて合成関数を使うのでしょうか。 ご教授お願いします。 三角関数の微分について教えてください 三角関数の微分についての解き方として A,Bを実数としてxについて微分する場合 AcosBx=-A*BsinBx' AsinBx=A*BcosBx' のように考えても大丈夫でしょうか? 詳しい理論についても勉強するつもりですが計算の技術としては問題ないか知りたいです。 三角関数の微分 高校生です 物理の単振動の変位x=Asin(ωt+θ0)を微分すると速度が、速度を微分すると加速度が出るというのを読んでいて思ったのですが 例えば三角関数y=sin(2x+3)というのがあったとして、これを微分するとy'=cos(2x+3)・(2x+3)'=2cos(2x+3)ですが y=sin(2x+3)の(2x+3)の部分は角度のことじゃないんですか? ということは微分した式の(2x+3)'というのは、角度を微分してるということになるんでしょうか? そうなると角度も微分する上では普通の数字と同じように扱っていいということですか?(最初のx=Asin(ωt+θ0)を微分すると初期位相のθ0が消えちゃうみたいに) 何か基本的な思い違いをしているような気がしますが、お願いします。 三角関数の微分の方法 今数学3に入って、三角関数の微分で困っています。 教科書の三角関数の微分の公式では、 (1) (sin(x))’=cos(x) (2) (cos(x))’=-sin(x) (3) (tan(x))’=1/{cos(x)}^2 と書いてあります。 ですが、(1)を用いた(2)の証明のところで (cos(x))’={sin(x+π/2)}’=cos(x+π/2)・(x+π/2)’=-sin(x) となっています。 また、例題では、 (1)y=sin(2x-1) を微分せよ y’=cos(2x-1)・(2x-1)’=cos(2x-1)・2=2cos(2x-1) となっています。 なぜ、公式の証明のところでは、cos(x+π/2)に(x+π/2)’をかけるのでしょうか? なぜ、例題でも cos(2x-1)に(2x-1)’をかけるのでしょうか? はじめの公式から読み取れず困っています。 どうか返答お願いします。 三角関数の微分 f(x)=e^arccosxの関数のイメージがまったくわかりません。 y=cosxの逆関数は,y=arccosxで、x=cosyとなります。 そうすると、y=e^yとありえない関数になってしまう気がします。 どこがおかしいのでしょうか。 また、f(x)を微分するとどうなるのでしょうか。 微分 現在、微分の勉強をしています。そこでお聞きしたいのですが、 □√A/B(□にはlogや逆三角関数などが入る)を微分する際にはどのようにしたらよいのでしょうか。 とりあえず√A/Bの微分を計算してしまったのですが、(logx)'=1/xや逆三角関数の微分の公式などは どのように関係してくるのでしょうか。どなたか教えてください。よろしくお願いします。 三角関数の微分 三角関数の微分が解けません。 三角関数の法則を利用して答えは纏めた形になるのですが、上手く纏める方法が思いつきません。 1. y=sin^2xcos^3(2x) y'=2sinxcosx*cos^3(2x)+sin^2x*(-6)cos^2xsinx Ans:y'=sin2xcos^2(2x)*{1-8sin^2(x)} 2sinxcosxを2倍角の公式を利用したりして纏めましたが答えにたどり着けません。 また、 2. y=sinx/1+tan^2(x) y'=cosx{1+tan^2(x)}-sinx*2tanx{1/cos^2(x)} Ans:y'=cosx{1-3sin^2(x)} 纏め方について助言お願いします。 三角関数の微分 (1-2cos^2x)/cos^2xを微分したいです。 微分するときは、商の導関数や, cos^2xに合成関数の導関数を、使用すればよいか教えてください。 途中の計算を書いてくれると、うれしいです。 逆三角関数 逆三角関数の微分公式を導き方について誰かおしえてくdさい。 おねがいします。 詳しくお願いします (1) ((sin^-1)x)'=1/√(1-x^2) (-1<x<1) (2) ((cos^-1)X)'=- 1/√(1-x^2) (-1<X<1) (3) ((tan^-1)x)'=1/(1+(X^2)) お願いします 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 逆三角関数の微分の解き方 逆三角関数の微分の問題で (x^2) * (cot(x/2))^(-1) を微分せよって言う問題で y=(x^2) * (cot(x/2))^(-1)として cot(y/(x^2))=(x/2) 両辺をxで微分して (dy/dx) * ( -(1/sin(y/x^2)) * 1/x^2) = 1/2 dy/dx = (-1/2) * x^2 * (sin(y/x^2))^2 = (-1/2) * x^2 * (tan(y/x^2)^2) / ((tan(y/x^2)^2) + 1) cot(y/x^2)=x/2から tan(y/x^2)=2/xで、これを代入して dy/dx= -2x^2 / (x^2 + 4)とだしたのですが 答えは、2x * (cot(x/2))^(-1) - (2x^2 / (x^2 + 4)) となっています。 途中で計算ミスをしているのでしょうか? アドバイスお願いします。 三角関数の導関数 三角関数の微分の仕方がわかりません。教えて下さい。 (ⅰ)sin(2x-1) (ⅱ)sin^3x (ⅲ)(1+cosx)sinx 三角関数の微分の問題 三角関数の微分の問題で、下の問題がわかりません。 次の関数を微分せよ。 y={cos2x}^3 答えは、 y’=-3cos(2x)・sin(4x) となっているのですが、僕がやるとなぜか y’=-6{cos(2x)}^2・sin(2x) となってしまいます。 途中式も書きますので、どこが間違っているのかも教えてください。 y={cos(2x)}^3 y’=3{cos(2x)}^2・{cos(2x)}’ =3{cos(2x)}^2・{-sin(2x)・2} =-6{cos(2x)}^2・sin(2x) 返答お願いします。 逆関数の微分について 逆関数を微分するとは例えばy=x^2に逆関数の微分の公式をつかうと、y=√x (x≧0)の導関数が得られるってものですか?どなたか詳しく教えていただけないでしょうか? 三角関数の微分 y=sin2xを合成関数の微分法により y'=(sin2x)'*(2x)'=cos2x*2=2cos2x とあったのですが、y=sin2xが何で合成関数なんですか。 私の理解では、合成関数とは関数の中に関数が入ったようなものと おもっていたのですが。 三角関数の微分について 岩波新書の「数学入門(下)」 遠山啓 著、を読んでいます。 この本の中でわからない所があります。 136ページの三角関数を微分してみよう、という所に以下のような数式が載っていました。 sin(x+Δx) - sinx AB AC AB ----------------- = ----- ----- = -----cosθ Δx Δx AB Δx なぜ、 AB AC ----- ----- Δx AB というのが出てくるのかがわかりません...。 この質問は図で説明しなければいけないと思うのですが、この場所には図を書けないの で困っています...。画像をどこかに置いて、アドレスをここに貼り付ければとも思った のですが、それはルール違反だとのことなので出来ませんでした。 どなたか、御指導を頂けたら幸いに思います。 逆三角関数f(x)=arctan x 逆三角関数 f(x)=arctan x の n回微分を求めてください。過程もお願いします! 逆関数の微分可能性 逆関数の微分可能性についての質問なのですが 1変数において y=f(x)が何回でも微分可能であれば 逆関数x=g(y)は何回でも微分可能である理由を述べよ という問題なのですが この『何回でも』という言葉がよくわからないのですが これは、y=f(x)が何回でも微分可能だから逆関数でも何回でも成り立つという考えなのでしょうか。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など