センター物理 干渉
空気中での波長がλの単色レーザー光(平行光線)をスリットA,Bに垂直に当て、スクリーン上に干渉縞をつくった。
このとき、2つのスリットの中央からスクリーンに下ろした垂線とスクリーンの交点をOとすると点Oには明線が生じた。
2つのスリットの間隔をd、スリットからスクリーンまでの距離をL,点Oから距離xだけ離れたスクリーン上の点をPとすると、xとdがLに比べて十分に小さいので|AP-BP|≒dx/Lが成り立つ。
ただし、空気の屈折率は1とし、スリットの面とスクリーンは平行である。
次に空気中での単色レーザー光の波長をλ=5×10^(-7)mとして、図3のようにスリットBの左側に厚さが1.5×10^(-6)mの透明な薄膜を取り付けたところ、点Oに明線が生じた
問1 薄膜の屈折率nはいくらか、最も適当な数値を次の(1)~(4)のうちから一つ選べ、ただし1.4<n<1.8とする
問2 薄膜中での単色レーザー光の速さは何m/sか。最も適当な数値を次の(1)~(4)のうちから一つ選べ。ただし、単色レーザー光の振動数を6.00×10^(14)hzとする
解説 問1 透明な薄膜の厚さa、薄膜の屈折率をnとする。
2つのスリットを通って点Oに届いた光の光路差は(na+BO)-(a+AO)=na-aである。空気の屈折率を1とするので、単色レーザー光の真空中での波長はλに等しい。
点Oで光が強めあうとき、この光路差が波長λの整数倍に等しいから
k=1,2,3...としてna-a=kλ よってn=1+kλ/a
λ=5×10^(-7)m,a=1.5×10^(-6)を代入して、n=1+k×1/3となる 1.4<n<1.8であるから 1.2<k<2.4
問2 空気の屈折率を1とするので、空気中での単色レーザー光の波長λ=5×10^(-7)m=3×10^(-7)mよって薄膜中での光速は1.8×10^8m/s
とあったのですが、まず問1で点Oに届いた光の光路差は(na+BO)-(a+AO)=na-aである。空気の屈折率を1とするので、単色レーザー光の真空中での波長はλに等しい。
とあるのですが
空気の屈折率が1とするので単色レーザー光の真空中の波長がλという事なのですが、これは真空中の屈折率が1という事でしょうか?
真空中が1だったとして真空中の波長を求める必要が何故あるのでしょうか?
それと点Oに届いた光の光路差がna-aと分かりましたがこれが波長λの整数倍で強めあうとあるんですが、薄膜中の波長等は考えなくていいんですか?このλは空気中の波長ですよね?
お礼
わかりました。 どうもありがとうございました(^^)