- ベストアンサー
三角形の相似
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
(1) △ADEは二等辺三角形 底角は等しいので <dae=<aed ac//deより錯覚は等しいので <aed=<eac ゆえに <eac=<dae=<gaf…(1) また、題意より <acb=<afc=90°…(2) (1)(2)より 2角が等しいので△afg∽△ace (2)もっとスマートな解き方がありそうですが、 △afg∽△aceより <agf=<aec 対頂角は等しいので <agf=<cge よって、 <cge=<aec=<gec 底角が等しいのでcg=ec ad=4より af=5,de=4 よって、be=3(三平方の定理) ac//deより ad:db=ec:be すなわち ec=3*4/5=12/5 cg=ecだから cg=12/5
その他の回答 (1)
- tomokoich
- ベストアンサー率51% (538/1043)
回答No.2
(1)△AFGと△ACEにおいて ∠AFG=∠ACE=90° △ADEはAD=DEより二等辺三角形なので∠DAE=∠DEA ∠DEA=∠EAC(平行線DEとACの錯角) よって∠FAG=∠DAE=∠EAC 2つの角が等しいので△AFG∽△ACE とりあえずここまで