絶対不等式
問題:すべての実数xに対して,不等式ax^2+(a-1)x+a<0が成り立つような実数aの値の範囲を求めよ。
ax^2+(a-1)x+a<0・・・(1)
【解答にa≠0のとき不等式(1)は2次不等式である。y=ax^2+(a-1)x+a・・・(2)とおくと,すべての実数xに対して,(1)が成り立つ
⇔すべての実数xに対して,y<0
⇔放物線(2)が,常にx軸の下方にある】
で、⇔すべての実数xに対してy<0の意味が分かりません。グラフを書いて2つ目の⇔は、分かりましたが、y<0とは、なんですか。