- ベストアンサー
形式主義について
「形式主義」というものについて、不案内なもので、いくつか お尋ねさせていただきます。 ○形式主義は、その名のとおり、形式さえ ふんでいれば何でもアリ のごツゴウ主義ですか? ○形式主義は無定義の考えかたであるということなら、その命題に意味は全く ないということですか? ○公理とするものが、単なる仮定に過ぎないなら、たぶん正しいだろうと思われるが不確かなことを仮に定めたに過ぎないのだから、そもそも正しいかどうか実のところ分からないものから導き出したものを、正しい結論を出せた、と言うことに何の意味があるのでしょうか? もう一つ、 ○形式主義というのは、いまの数学界で、どういう存在ですか? 以上、よろしく お願いします。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
数学における「形式主義」をご指名(?)だとして、的外れな私見を少々。 ・「形式さえふんでいれば何でもアリ のごツゴウ主義」とは逆に、厳密な公理系と推論規則を守ろうとする体系。 ヒルベルトは、本質的に意味のある結果をもたらすために、確実な超数学的方法を熟考したのである。 ・「その命題に意味は全くない」とは逆に、パラドックス問題の解決を目指した体系。 ・「公理とするものが、単なる仮定に過ぎない」という極言が許されるのなら、実益本位みたいに見える自然科学 の体系すら、「単なる仮定に過ぎない」モデルからの推論で成立しているといえるだろう。 ・「形式主義というのは、いまの数学界で」は、不完全性定理によって挫折。 ヒルベルトの形式主義は有限算術の進展に寄与したといわれているが、ヒルベルトは有限算術に関しては現実主義者 だったらしい。
その他の回答 (1)
- banakona
- ベストアンサー率45% (222/489)
3番目だけ回答します。 一般社会では「仮定」は正しいかどうか曖昧なものを持ってくることが多いですが、数学の「公理」は自明なもの、つまり正しいことが明らかなものです。 >不確かなことを仮に定めたに過ぎない ということはありません。百歩ゆずってみても、「不確かなこと」ではなく「ほとんど間違いのないこと」を前提にしているので、公理が原因で論証の全体が揺らぐということは、まずありません。あったとしたらそれは公理が原因ではなく、途中の論理展開に問題があったのでしょう。 だから、数学においてはご指摘のような心配はありません。 蛇足:ひょっとして質問者さんは、数百億分の一の不確かさ・不完全さ、失敗の可能性などを理由に、全体を放棄しようとしていませんか? そうしたことはまず起きないし、たとえ起きても保険的対策を予めとることにより被害を最小限にできます。
お礼
さっそくのアドバイスを いただいて、ありがとうございます。 返事が出遅れまして、失礼しました。 >数学の「公理」は自明なもの、つまり正しいことが明らかなもの ですが、一般的に数学で言う「公理」と、(数学界での)形式主義に おける「公理」とは、また違うのだろうかと思ったのです。 形式主義では、そもそも定義すらない、とか聞きましたので。 もっとも、定義しないというのであれば、間違いがないか どうかを問う意味すらもないのではないでしょうか。 >数百億分の一の不確かさ・不完全さ、失敗の可能性などを理由に、全体を放棄しようとしていませんか?そうしたことはまず起きないし、たとえ起きても保険的対策を予めとることにより被害を最小限にできます。 そうなんですか。 まあ、これは私自身のことではないのですが(笑)むしろ「保険的対策を予めとる」ために形式主義に拘っていたような御仁を見かけて、たいへんフシギに思ったものですから。。。
お礼
さっそくアドバイスをいただいて、ありがとうございます。 返事が出遅れまして、失礼しました。 はい、数学における「形式主義」です。 「的外れ」などとは、とんでもない。と言うか、私には「的外れ」か否かも分からないのですが。。。 形式主義においては、推論規則が最重要なものかと思うのですが、「厳密な」公理ということの意味が、よく分からないのです(形式主義に おいてです)。 >パラドックス問題の解決を目指した これは、集合論とかに関わるのでしょうか。 >自然科学の体系すら、 数学界における形式主義の出発点と、自然科学の それとを同様に考えることは妥当なのでしょうか?? ゲー出るの登場によって挫折したという話は、少し聞いてます。 >ヒルベルトは有限算術に関しては現実主義者だったらしい。 そうですか。なんか皮肉な感じがしますね。。。