ベストアンサー 平面の垂直条件 2009/03/04 15:14 平面πにある直線AB、BCがともにOAに垂直なら平面πはなぜOAに垂直といえるのでしょうか?? どなたかお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー owata-www ベストアンサー率33% (645/1954) 2009/03/04 17:54 回答No.1 参考に http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1012790440?fr=rcmd_chie_detail 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 平面上の交わる2直線に垂直な直線は、その平面に垂直、すなわち、その平面 平面上の交わる2直線に垂直な直線は、その平面に垂直、すなわち、その平面上のすべての直線に垂直である。 この定理を初等幾何で示す方法を知りたいのですが、分かる方がいましたらよろしくお願い致します。 直線と平面との垂直について 直線Lが、平面Pとの交点をとおる直線と垂直であるとき直線L垂直平面P。 このとき最低いくつの直線と垂直だとL垂直Pになりますか?やっぱり2つでしょうか?やさしく説明ねがいます。 08数B空間ベクトルの問題です。 解説をお願いします。 空間に4点O,A,B,Cがあり、 三本の線分OA,AB,BCについて OA=AB=BC=1,OA ⊥AB,AB⊥BCが与えられている。 この四面体で体積が最大となる 四面体を考える 。 ↑OA・↑BC=□ だから体積は□/□ である。さ らに、頂点Bから平面OACに垂直な直線を引き 、その交点をHとすると、 │↑BH│=√□/□ であり、 ↑OH=↑OA+(□/□)*↑AB+ (□/□)*↑BC である。 □にあてはまる値を解説して下さい。よろしく お願いしますm(_ _)m 数B空間ベクトルの問題 数B空間ベクトルの問題です。 解説をお願いします。 空間に4点O,A,B,Cがあり、 三本の線分OA,AB,BCについて OA=AB=BC=1,OA⊥AB,AB⊥BCが与えられている。 この四面体で体積が最大となる 四面体を考える。 ↑OA・↑BC=□ だから体積は□/□ である。さらに、頂点Bから平面OACに垂直な直線を引き、その交点をHとすると、 │↑BH│=√□/□ であり、 ↑OH=↑OA+(□/□)*↑AB+ (□/□)*↑BC である。 □にあてはまる値を解説して下さい。よろしくお願いしますm(_ _)m 平面上の3つのベクトルを→OA=(4,x)・・・ 平面上の3つのベクトルを→OA=(4,x)、→OB=(1,2)、→OC=(x,6)とする。3点A, B,Cが一直線上にあるようなxの値は□である。 A,B,Cが一直線上にあるので、AB//BC ABベクトル=(1-4,2-x) =(-3,2-x) BCベクトル=(x-1,6-2) =(x-1,4) この先が分かりません。 ここまでが合っているのかもわかりませんが。 よろしくお願いします。 数学II 2直線の垂直条件 平面上の点の座標 3点A(1,3)、B(3,2)、C(5,6)を頂点とする三角形が直角三角形であることを示しなさい。 三平方の定理から AB=√5 BC=√20 CA=√25 AB^2+BC^2=CA^2 でそれぞれAB,BC,CAの距離を求めていますが ABはx(3-1)、y(2-3)で CAはx(1-5)、y(3-6)となってますが 座標でも、数直線上と同じで大きい方から小さい方を引くのでしょうか?AB,BCならCAだと思ってしまうのですが何か決まりはありますか? また、2直線の垂直条件の説明文で l:y=mx l':y=m'xとあるのですが比ですか? x:y=2:1などはよくみますがl:y=mx l':y=m'xはどういう意味でしょうか? 直線の方程式と垂直な平面の方程式 2点(2,-2,3)、(-2、-5、6)を通る直線lは (x-2)/(-2)=(y+2)/(-5)=(z-5)/6 ですが、この直線の方程式と垂直に交わり(1、1、5)を通る平面の方程式はどう求めるのでしょうか?AB=-4i-3j+3kと(x-1)i+(y-1)j+(z-5)kの積=0として解くと考えたのですが・・・ 平面上のベクトルの垂直条件 平面上のベクトルの垂直条件を,内積を用いずに証明してみました。 添付画像のように点A,点Bの座標を定め,2直線の垂直条件から (a2/a1)×(b2/b1)=-1 a2b2=-a1b1 a1b1+a2b2=0 以上でよろしいですか。 平面に垂直な方程式 平面の方程式が (1/a)x+(1/b)y+(1/c)z-1=0 で表されるとき、このへ面に垂直な原点を通る直線の方程式は どのように求めたらよいのでしょうか? 直線を含む平面 直線を含む平面とはどのような平面のことをいうのでしょうか? 直線に垂直とはまた違いますよね? 2点を通り、平面1に垂直な平面2の求め方 A=(2,1,-1),B=(3,2,1)を通り,平面4x-y-z+2=0に垂直な平面のとき方を教えてください 空間のベクトル、平面上の条件 「正四面体OABCにおいてOA→=a→、OB→=b→、OC→=c→とする。辺OAを4:3に内分する点をP、辺BCを5:3に内分する点をQとする。そのときPQ→を求めよ。また、線分PQの中点をRとし、直線ARが△OBCの定める平面と交わる点をSとする。そのときのAR:ASを求めよ。 また、cos∠AOQを求めよ」 という問題です。 最初のPQ→=-4/7a→+3/8b→+5/8c→と出せたんですが(あっているかは自信ありません) 次のAR:ASとcos∠AOQの求め方がわかりません。 平面上の条件(?)を使うのではないかと思ったんですが、どこでどのように使えばいいのかがよくわかりません。 回答いただけるとありがたいです。よろしくお願いします 平面の方程式について 点E(3,2,-7)を通り、直線(x/2)={(y+1)/-1}={(z-1)/3}に垂直な平面の方程式の求め方を教えてください。 また、ある直線にたいして平行もしくは垂直な平面の方程式を求める方法を教えてください。※上の質問のみでもかまいません。 お手数お掛けしますがよろしくお願いいたします。 数B平面ベクトルの問題 平面ベクトルの問題です!解説をお願いします。 OA=√3,OB=√2, AB=2の△OABの形をした紙を考える。辺OAを2:1に内分する点を Cとし、図のように線分BCを折 り目としてこの紙を折ったときの頂点Oのうつる先をD、線分CDと辺ABとの交点をEとする。このとき、次の各問いに答えよ。 (1)↑OAと↑OBの内積を求めよ 。 (2)↑ODを↑OAと↑OBで表せ。 (3)△EDBの面積を求めよ。 平面上の三角形(ベクトル) 「平面上の三角形OABは、OA→=a→、OB→=b→とおくとき、|a→|=1、|b→|=√2、a→・b→=1/2を満たすとする。辺ABを1:2に内分する点をPとし、直線OPに関してAと対称な点をQ、OQの延長とABの交点をRとおく。 (1)OQ→をa→とb→であらわせ。 (2)OR→をa→とb→であらわせ。 (3)三角形PQRの面積を求めよ。」 という問題を解いています。 図示はてきたのですが、どこからOQ→をあらわせばよいのかがわかりません。 アドバイスいただけると助かります。 回答宜しくお願いします。 平面ベクトル 平面ベクトルに関して分からない問題が2つあります。 A.ΔABCで、辺ABを2:1に内分する点をP、辺BCを2:3に内分する点をQ、辺CAを3:4に外分する点をRと定める。このとき、3点P、Q、Rは一直線上にあることを示せ。 B.3点O、A、Bに対して、OA↑=a↑、OB↑=b↑とおく。p↑=t(a↑/|a↑|+b↑/|b↑|)で表される点P(p↑)は、∠AOBの二等分線上にあることを証明せよ。 というものなんですが、まずAはBA↑をa↑、BC↑をb↑と置いて、点Rを外分の式でa↑とb↑を使って求めたのですが、結局どうにもならず挫折…、Bは要するにOP↑=OA↑+OB↑ってことですか?もう全く分かりません。よろしくお願いします。 平面とベクトルの条件 参考書に 平面上に三角形ABCと原点Oがある。その平面上の点をPとすれば l(→OA)+m(→OB)+n(→OC)=(→OP)、l,m,nはl+m+n=1をみたす実数である。 で表される。 その後式変形等があって (→AP)=m(→AB)+n(→AC) このことからPは平面ABC上にあり、又この平面上の点はすべてこの形で 表されると書いてあるのですが そこで質問ですが、 l+m+nが1でないときは点Pは何処に行くのでしょうか 2平面に垂直で原点を通る平面の方程式 数学素人で大学の数学(行列)を勉強してます。 分からないのでご教授お願いします。 2平面に垂直で原点を通る平面の方程式を求めよ π1=2X-3y+4Z=1 π2=x+2y-3Z=2 平面上に平行四辺形OACBがあり この平面上の点Pに対してOP↑=sOA↑+tOB↑の形に表す s、tが関係式5s+2t=3を満たしながら変わるとき、Pはある定直線上を動く その直線と二辺OA、BCとの交点をそれぞれA'、B'とする 線分A'B'上の点Pを通り、二辺OA、OBのそれぞれに平行な2直線をl、mとし、l、m、OA、OBで定まる平行四辺形の面積をSとする 点Pが線分A'B'上を動くとき、Sを最大にするような点Pについて、OP↑をOA↑とOB↑を用いて表せ 解き方を教えてください 平面上に平行四辺形OACBがあり この平面上の点Pに対してOP↑=sOA↑+tOB↑の形に表す s、tが関係式5s+2t=3を満たしながら変わるとき、Pはある定直線上を動く その直線と二辺OA、BCとの交点をそれぞれA'、B'とする 線分A'B'上の点Pを通り、二辺OA、OBのそれぞれに平行な2直線をl、mとし、l、m、OA、OBで定まる平行四辺形の面積をSとする 点Pが線分A'B'上を動くとき、Sを最大にするような点Pについて、OP↑をOA↑とOB↑を用いて表せ Sがt|OB↑|*s|OA↑|が最大のとき最大になるらしいのですが何故ですか? 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど