ベストアンサー 微分可能について 2009/02/15 23:20 「何回も微分可能」ということと、「連続する微分係数を有する」ということは同じですか? もし、違うのであれば、違いを教えて下さい。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー sanori ベストアンサー率48% (5664/11798) 2009/02/15 23:28 回答No.1 こんばんは。 違います。 「連続する微分係数を有する」という言い方は、あまりポピュラーではないですが、 それは、全区間あるいは指定された一部の区間について、微分係数が連続であるということです。 言い換えれば、少なくとも1回は(その区間について)微分可能であるということです。 一方、「何回も微分可能」というのは、 何度微分しても、全区間あるいは指定された一部の区間について、さらに微分可能であるということです。 つまり、2回目以降の微分についても言っています。 ご参考になりましたら幸いです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) arrysthmia ベストアンサー率38% (442/1154) 2009/02/15 23:53 回答No.2 「何回も微分可能」であることを、「滑らか」とか「C^∞級」とか、 「連続する微分係数を有する」ことを、「C^1級」とか言いますね。 「少なくとも1回は微分可能である」ことを「D^1級」とも。 関数がC^∞級であれば、C^1級でもあり、 C^1級であれば、D^1級でもありますが、 逆は言えません。 実数全域でC^1級だが、C^∞級ではない関数の例: | x^3 | 実数全域でD^1級だが、C^1級ではない関数の例: (x^2) sin(1/x) 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分について 高校2年の者です。 今学校の授業で 微分についてやっています。 そこで分からないことが あります。 数学の先生に聞いても いまいち理解できません でした(^^; 極限値と微分係数は どこが違うんですか? この2つの違いが いまいちわかりません(>_<) 実際に問題を解いて みたんですが、 どちらを求める問題も 問題の式が似ていて (どちらもlimを使う問題) 余計分からなくなりました・・・ ある友人は同じだと 言うのですが、同じなら 名前をわける必要ない ではないですか? どなたか極限値と微分係数について教えてくださると嬉しいですm(__)m 関数の連続、微分、接線、積分 関数の連続や微分可能な関数などについての理解があいまいなのですが、以下の文章に間違いがあったら指摘くださいますか? 左右両方からxがaに接近するときの微分係数が一致したら、x=aで微分可能 x=aで微分可能ならx=aで連続。 微分可能で直線じゃないならその点においての接線がある。 微分不可能な点では接線は存在しない。 積分は連続している範囲でできる。 連続していない範囲では積分できない。 連続は(数学的じゃないですが)一筆書きでかけるようなのを連続という。数学的にはイプシロンデルタ論法をつかうと思いますが今は省略します。 f(x)が範囲Mで微分可能ならf '(x)は範囲Mでさらに微分可能。これは何回でも可能で、多項式関数の場合は最終的に0になる。 たとえばf(x)=|x| はすべての実数において連続だがx=0で微分できない。 xが0にちかづくときプラスからでもマイナスからでもf(x)は0になりかつf(0)が0であるから連続 xが0に近づくときプラスからとマイナスからの接近による微分係数は順に1,-1なので、微分できない。微分できないのでx=0における接線は存在しない。 回答よろしくお願いします。 微分方程式をさらに微分する 下の画像のような微分方程式(*)においてR=(z^2-1)^Lとする。 (*)をzで1回微分すると(1)式になり、さらに1回微分して(2)式、また微分して(3)式のようになるようですが、どうしてこうなるのでしょうか。それに微分方程式なのにそれをまた微分するという操作がよく分かりません。文章の通りに単純に微分しただけなんでしょうけど、-2(L-2)zが-2(L-3)zとなったり、-2(2L-1)が-2(3L-3)となったりと、どのようにして係数が変化したのか解説をお願いします。m(__)m 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 導関数と微分係数の違い こんにちは。 タイトルのままなんですけど、導関数と微分係数の違いについて教えて下さい。 とても困っているのでお願いします!m(__)m ベクトルを微分したあと、t=1のときの微分係数を求 ベクトルを微分したあと、t=1のときの微分係数を求めよという問題が分からなくて困っています(~_~;) これはつまり、方向微分係数のことでしょうか? もしそうならばどのように解くのか? 解答よろしくお願いします。 偏微分係数の連続性の証明 関数 f(x,y)= { 0 if(x,y)=(0,0) xy/√(x^2+y^2 ) otherwise } fの偏微分係数の連続性について確認してください。また、fは点(0,0)において微分可能でないことも示す。 微分の計算について 経済変動の微分です Y=2K (Y.Kは変数)をKについて微分 Y=αK (Y.Kは変数 αは係数)をKについて微分 Y=2αK (Y.Kは変数 αは係数)をKについて微分 Y=3βλK~^ (Y.Kは変数 αβλは係数)をKについて微分 ~は小さい2 ^は小さいαです 4問もありますがよろしくお願いします。 微分 s=(159a+b-66)^2+(163a+b-59)^2+(180a+b-94)^2 この式を、aについて微分すると 2(159a+b-66)*159+2(163a+b-59)*163+2(180a+b-94)*180 bについて微分すると 2(159a+b-66)+2(163a+b-59)+2(180a+b-94) になると本に書いてありましたが 微分するとaの係数159が「*159」なってbの係数1が[*1]になるのでしょうか? 微分係数の求め方! 大学で数理解析という講義がありましてそれに出された課題が高校で習った微分係数の問題なのですが、高校時代文系だった私はよくわかりません。どなたか教えていただけませんでしょうか? (1)g(x)=2x2乗ー3x+2のx=-0.5における微分係数 (2)h(x)=-3x3乗-xマイナス4乗+6のx=1における微分係数 (3)f(x)=5のx=-1.5における微分係数 (3)は答えは0とわかっているのですが、どうしてそうなるのか理屈がわかりません。この課題は10月11日までに提出ということで今とてもあせっています。どなたか教えてください。お願いします。 微分係数・導関数 微分係数と導関数の違いって何ですか? 教科書ではf'(a)のaをxに置き換えて…と説明していますが、文字をひとつ変えるだけで、新しい言葉を出すくらい、そんなにも意味って違ってくるのですか? 数III 微分 f(x)=√(x+1)のとき,g(x)=f(f(x))のx=0における微分係数を求めよ 全く分かりません(´`;) 微分係数だから極限値を使えばいいのでしょうか? 誰か分かる方教えてください(..)m 微分について教えてください (1)y=log(10)XのX=1における微分係数 (2)y=e^XのX=0における微分係数 を求める計算です。 それぞれf'(X)=lim<h→0> {f(X+h)-f(X)}/h を使って計算過程も示さなければならないのですが それぞれ代入してみても答えにうまくたどりつけません。 どのように解いていったらいいのでしょうか? どなたか解説よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 大学数学の全微分可能性に関する質問です、どなたかよろしくお願いします 大学の全微分に関する問題で 次の関数は原点で全微分可能でないことを示せという問題なのですが。 f(x)= x^2y/(x^4+y^2) (x,y)=(0,0)以外のとき 0 (x,y)=(0,0)のとき 原点における偏微分可能性と連続性を考えたところ、 関数の連続性に関しては y=x^2 と y=x にそった極限の値の違いから連続でないことはわかったのですが、 偏微分可能性についてがどうしてもよくわかりません。普通に偏微分したら原点ではできないとは思うのですが、 そもそも連続じゃないのに偏微分可能なんてことがあるのだろうかなどと考えはじめたら混乱してしまいました。。。 この方法で示せるのかも含めてどなたか回答をよろしくお願いします。<(_ _)> 微分可能なのに導関数が不連続? 一般にm回微分可能でも(d^m/dx^m)f(x)は連続ではないそうですが(本で読みました。) f(x)が微分可能で、導関数f'(x)が連続でないような関数f(x)の例を教えてください。 傾きが不連続(導関数f'(x)が不連続)なのに滑らか(微分可能)ってのがどうもイメージできないので。 微分方程式です 連続の投稿ですいません。 y''''-y''=0の解を求めたいです。 (y''''は4回微分という意味です) よろしくお願いします。 微分係数についてです。 y=log(10)x のx=1における微分係数、 y=e^x のx=0における微分係数を求めよ。 という問題です。 limを使う計算過程がわからないので、 どなたか解説していただけませんか? *ちなみに(10)は底です。 微分の疑問 y=x^2を微分したら2xとかsinxを微分したらcosxとか、よく普通にやっていますが、もしこの関数達の微分する部分が連続性を持たない(y=|x|のx=0など)なら微分不可能ですよね だとしたらこの関数達を微分する部分が連続性を持ってることを示さなければならないということになりますが、どうやれば連続であることを示せるのでしょうか? 直感は数学では通用しないので、示す方法が存在すると思います もしかしたら単純なことかもしれませんが教えてください 微分の問題 微分の問題 次の問題で困っています。 g(1)=4,g’(1)=2,g’’(1)=-3であり、f(4)=4,f’(4)=-1,f’’(4)=5とする。 このとき、合成関数(f○g)(x)のx=1での一階の微分係数および、2階の微分係数を求めよ。 数学が得意な方、ご解答お願いします。 f"(a)の呼び方は?第2次微分係数? f"(a)の呼び方は何というのでしょうか? 第2次微分係数とよんでいいのでしょうか? f^(n)(a)は第n次微分係数でいいのでしょうか? 二回しか微分可能でない多変数関数の極値判定について 2変数の場合は、極値判定条件は2回連続微分可能を仮定するだけで証明できます。 ヘッシアンを用いた一般的な場合の証明で、は三回連続微分可能を仮定した証明しか見つからないのですか、原理的には二回連続微分可能の仮定で証明可能なはずなのですか、どこかにそれを記したものはないでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など