ベストアンサー f"(a)の呼び方は?第2次微分係数? 2006/06/24 22:21 f"(a)の呼び方は何というのでしょうか? 第2次微分係数とよんでいいのでしょうか? f^(n)(a)は第n次微分係数でいいのでしょうか? みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー m234023b ベストアンサー率20% (54/266) 2006/06/26 23:04 回答No.3 関数f(x)を二階微分したものを第二次導関数とよびf''(a)は第二次微分係数で問題ないと思います 質問者 お礼 2008/01/25 11:40 有難うございます。 お蔭様で参考になりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) m234023b ベストアンサー率20% (54/266) 2006/06/25 23:18 回答No.2 僕は高校でも大学でも[エフ ツーダッシュ エー]と読んでいました. 違うかな… 質問者 お礼 2006/06/26 08:28 有り難うございます。 > は高校でも大学でも[エフ ツーダッシュ エー]と読んでいました. 記号の発音はそうだと思いますが 意味としては第2次微分係数とよんでいいのでしょうか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 s_t_a_ ベストアンサー率62% (72/115) 2006/06/25 00:04 回答No.1 数学が専門じゃないのですが、 大学の数学の授業では2次導関数と呼んでいました。2階導関数という言い方をする先生もいました。 それぞれn次導関数、n階導関数という言い方もありました。 第2次微分係数という言い方は通じるとは思うんですが、僕は直接は聞いたことはありません。 質問者 お礼 2008/01/25 11:39 有難うございます。 お蔭様で参考になりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分係数の定義とは 以下の問題の解き方がわからなくて困っています。 関数f(x)=x^3+1における微分係数を、微分係数の定義に従って求めよ。 これは、まず微分を行い、f'(x)=3x^2を導けばいいのでしょうか? その後、xにaを代入して、f'(a)=3a^2とすれば、 その後は、どう解けばいいのでしょうか? わかるかた、よろしくおねがいします。 微分係数 次の文で意味が違うのはどれでしょうか?教えてください! 1.f(x)のx=aにおける微分係数 2.導関数f'(x)のx=aにおける値 3.y=f(x)のグラフの点(a,f(a))における接線の傾き 4.x→aとしたときのf(x)の極限値lim f(x) x→a 微分係数の求め方! 大学で数理解析という講義がありましてそれに出された課題が高校で習った微分係数の問題なのですが、高校時代文系だった私はよくわかりません。どなたか教えていただけませんでしょうか? (1)g(x)=2x2乗ー3x+2のx=-0.5における微分係数 (2)h(x)=-3x3乗-xマイナス4乗+6のx=1における微分係数 (3)f(x)=5のx=-1.5における微分係数 (3)は答えは0とわかっているのですが、どうしてそうなるのか理屈がわかりません。この課題は10月11日までに提出ということで今とてもあせっています。どなたか教えてください。お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分係数・導関数 微分係数と導関数の違いって何ですか? 教科書ではf'(a)のaをxに置き換えて…と説明していますが、文字をひとつ変えるだけで、新しい言葉を出すくらい、そんなにも意味って違ってくるのですか? 微分積分の問題。微分係数の問題です。 次の関数について()内の点における値と微分係数を求めよ。 (1)y=Sin^-1 x/2 (x=1) (2)y=(Tan^-1x)^2 (x=-1) 値は分かるんですけど微分係数の求め方が分かりません。 lim(h→0) {f(a+h)-f(a)}/h で求めるんでしょうか?でも求まらないような……。 途中式含め教えて下さい。お願いします。 導関数の求め方で微分係数を求めてはいけない? 基本的すぎる質問で恐縮です。 x=aにおける微分係数f'(a)を求めよ、という問題で、 導関数f'(x)を出してから、そのxをaに換える… というのはやはりNGでしょうか。 猛烈なお叱りがきそうでドキドキです。 当方、深く考えておらず、「これでも出てくるや~」「簡単に出るわ~」程度の浅い考えでそうしてしまっていたのですが(>_<) 微分係数を求める問題で f(x)=-2[二乗]-3x+1 について (x=0)の微分係数を求めよ。 という問題で 導関数の式に当てはめていくと f(0)’=lim h→0 -4a-2h+3 となりました。 この後どのように答えればよいのでしょうか? 教科書などを見ても分からずとても困っています>< どうかよろしくお願いします。 微分係数について たとえば、関数F(y)=∫(0→√x)e^(xy)sinx^2dx(こういう関数ならなんでもよい)のy=0における微分係数を求める時、「積分と微分の可換性を用いれば簡単に計算できる」というのですがどういうことですか?分かる方教えてください。 ベクトル解析の方向微分係数について たとえば、xyz=1でA(1,1,1)とします。 Aにおける(1,2、3)方向の方向微分係数を求める。 f=xyz-1とおく gradf=(yz,xz,xy) Aを代入(1,1,1) よって、法線ベクトルが求まりました。 (1,1,1)・(1,2,3)とすればいいのですよね? しかし、例えばf=1-xyzとおくと 法線ベクトルが(-1、-1、-1)となり、 方向微分係数のが違う値になります。 xyz=1をどちら移項すればいいのか分かりません。 どなたか教えてください。 微分係数について 微分係数について質問です。微分係数とは平均変化率の極限をとったもの即ち、lim(h→0)f(x+h)-f(x)/hですよね?例えばf(x)=x^2の平均変化率は2x+hとなりlim(h→0)にすると2xになります。但しこれは極限値であり平均変化率は2xに限りなくいくらでも近づくことができますが、2xそのものには決してなりえませんよね?それなのに平均変化率を2x(極限値)そのものにして良いのでしょうか?直感的には必ず、微小な誤差hがつきまとうと思うのです。 回答よろしくお願いいたします。 微分係数の問題で悩んでいます。 微分係数の問題で悩んでいます。 y=log10のXのX=1における微分係数を求めたいのですが f’(1)=lim{log10の(1+h)-log10の1} =0 となって答えが合いません 分母のhに0を代入したのがいけないのでしょうか? 愚問ですみません。 数学 微分係数 関数f(x)=X^3について、次の微分係数を求めよ。 (1)f(1) これの解き方がよく分かりません。 解き方の過程の式を教えてください! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分係数 図のような関数をx≠0の時定義し、x=0では0と定義した関数f(x)において、f'(0)=0,x≠0の時lim(x→0)f'(x)は存在しないらしいのですが、どうしてでしょうか?どちらもx=0における微分係数では無いのですか? 偏微分係数が等しい関数とは? 実関数(x,y)を時間tで偏微分したとき、偏微分係数が ∂f/∂x=∂f/∂y と等しいよう関数f(x,y)は、どんな関数なんでしょうか。具体的な例の関数があれば、お示しください。 微分係数の問題です 以前、こちらでご指導いただいた問題の再掲なのですが、 みなさんのご指導をうけ、自分なりに解いてみました。 おかしいところや不足点がないか、ご指導お願いします。 関数f(x)=3x^3+1のa=xにおける微分係数を、 微分係数の定義にしたがって、求めよ。 公式 f'(a)=lim{h→0} {f(a+h)-f(a)}/h より、 f'(a)=lim{h→0} {(a+h)^3-(a^3+1)}/h =lim{h→0} {a^3+3a^2h+3ah^2+h^3-(a^3+1)}/h =lim{h→0} (3a^2h+3ah^2+h^3+1)/h =lim{h→0} {h(3a^2+3ah+h^2)+1}/h =lim{h→0} (h(3a^2+3ah+h^2)/h-(1/h) =lim{h→0} (3a^2+3ah+h^2)-(1/h) →3a^2 微分係数と導関数(数学II) お世話になっております。数学IIの微積の入り始めからの質問です。 どうも、極限値から微分係数を定義するあたりから、掴み損ねているのですが、まず、微分係数を図形的に捉えて、これを任意の曲線上の点上の接線の傾きを表すこと。 導関数について、これを定義通りに公式から導く。次いで導関数f'(x)のxに色々な値aを代入すると、元の関数y=f(x)のxが限り無くaに近付く時の平均変化率つまり微分係数になる。など色々説明されていますが、始めグラフで説明されていたのが、極限値あたりから途端に言葉だけの説明になり、当初平均の速さと瞬間の速さをうまく関数に対応させていた考えが、途中で途絶えてしまった感があります。そこで、単純な導関数から微分係数を求める問題をグラフから捉えてみようと図に落としてみました。 例題 関数f(x)=x^2-4xのx=0,3における微分係数を求めろ。 解 f'(x)=2x-4 が与式の導関数であるから(ここは機械的に計算しました)、 f'(0)=-4 f'(3)=2 微分係数は接線の傾きであること、接線の定義上放物線と交わるような直線とはならないし、また、微分係数はxが限り無く0または3に近付くときの平均変化率の値であることを考えると何となくですが、添付画像のようになりました。何でも良いのでアドバイスいただけると嬉しいです。 宜しくお願いします。 偏微分係数。 次の二変数関数fの(0,0)での各変数x,yに関する偏微分係数を求めよ。 f(x,y)= (2y+sinx/x+y if x+y≠0 (1 if x+y=0 解)xに関して lim(h→0) 1/h{f(0+h,0)-f(0,0)}= lim(h→0)sinh/h・1/h-1/h →+∞ よってfは(0,0)でxに関して偏微分ではない。 yに関して lim(h→0) 1/h{f(0,0+h)-f(0,0)}= lim(h→0) 2/h-1 →+∞ よってfは(0,0)でyに関して偏微分ではない。 これ合ってるでしょうか?間違っている気がするのですが…ご教授お願い致します。 高階偏微分係数とテイラー展開 n変数をまとめてxで表し、 x=(x1、x2、x3・・・、xn) また ∂j=∂/∂xjをxjについての偏微分とします。 多重指数α=(α1、α2、α3・・・、αn)に対して、 (1)x^α=x1^α1・x2^α2・x3^α3・・・・xn^αn (2)∂^α=∂1^α1・∂2^α2・∂3^α3・・・・∂n^αn (3)α!=α1!・α2!・3!・・・・・・αn! (4)|α|=α1+α2+α3・・+αnとします。 (5)f(x)を無限回微分可能な関数とします。 (1).aとhを固定してF(t)=f(a+th)とします。 n=0,1,2,3に対して、 F(t)のn回微分F^(n)(t)【^(n)のように微分の場合括弧をつけます】は Σ(n!/α!)・ (h^α)(∂^α)(a+ th)等しいことを示しなさいという問題。むずかしいです。帰納法で攻めてったらいいのでしょうか? (2).F(t)についてのt=0でのテイラー展開から F(1)=Σ<p=0→n>{F^(p)(0)}/p!+ 1/n!∫<0→1>(1-t)^n・F^(n +1)(t)dtを導き、さらにこの等式がx=a でのテイラー展開f(a+h)=Σ<|α|≦n>{∂^α・f(a )h^α}/α!+Σ<|β|=n+1|>{(n+1)h^β}/β!・(∫<0→1>(1-t)^n・∂^β・f(a+th)dtを導高とは思うんですが・・・ f(x)がx=aで微分できるか xf(x)が、ある点a(a ≠0)で、微分できるとし、またfがaで連続だとすると、fがx=aで微分可能であることを示せという問題なのですが、 xf(x)を微分してみて、 (xf(x) )'=x(f(x))'+f(x)という風になると思うのですが、ここでよくわからないのですが、 もしf(x)がaで微分不可能だとしたら、a(f(a))'+f(a)の値はどうなるのでしょうか? 只単にf(a)だけになるのでしょうか? もしこれでa(f(a))'+f(a)の値がf(x)がaで微分できないから値なしということならば、値はあるはずだからaで微分可能という風になるのかなと思いまして... 回答よろしくお願いします。 微分係数についてです。 y=log(10)x のx=1における微分係数、 y=e^x のx=0における微分係数を求めよ。 という問題です。 limを使う計算過程がわからないので、 どなたか解説していただけませんか? *ちなみに(10)は底です。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
有難うございます。 お蔭様で参考になりました。