- 締切済み
数学
数学の問題を解いているのですが,途中までしかできませんでした.続きをだれか教えていただけませんか. (1)1+sin^2 θ=3sinθcosθが成り立つとき,tanθの値を求めよ. (2)f(x)=sin^2 x+4sinxcosx-3cos^2 xについて,次の各問いに答えよ. 1:f(x)=a(sinbx+p)+qの形にせよ. 2:f(x)=1を解け.ただし,0≦x≦πとする. (3)不等式|cosθ|≦sin|θ| (-π≦θ≦π)を解け. 解答 (1)1+sin^2θ=1+1/2(1-cos2θ) 3sinθcosθ=3/2sin2θ よって 1+1/2(1-cos2θ)=3/2sin2θ, 3sin2θ+cos2θ=3, 合成公式より,√10sin(2θ+α)=3( となるので,tanα=1/3である. (2) 1:f(x)=1/2(1-cos2x)+2sin2x-3/2(1+cos2x)=2(sin2x-cos2x)-1=2√2sin(2x-π/4)-1 f(x)=1とすると、 2√2sin(2x-π/4)-1=1となります。 sin(2x-π/4)=√2/2 (3)どのような方針でやればいいのかわかりません. 誰か教えていただけませんか.
- みんなの回答 (3)
- 専門家の回答
みんなの回答
- take_5
- ベストアンサー率30% (149/488)
回答No.3
- arrysthmia
- ベストアンサー率38% (442/1154)
回答No.2
- kumipapa
- ベストアンサー率55% (246/440)
回答No.1