- ベストアンサー
数学
0≦x<2πのとき、関数y=sin^2x+sinxcosx+3cos^2xの最大値と最小値を求めよ。 と言う問題があります。 解答↓ y={(1-cos2x)/2}+√3sin2x+3{(1+cos2x)/2}=√3sin2x+cos2x+2=2sin(2x+π/6)+2 0≦x<2πのときπ/6≦2x+π/6<25π/6 このとき -1≦sin(2x+π/6)≦1なので0≦y≦4……… この0≦y≦4という数字はどこからどの様に出てきたのか教えてください。
- みんなの回答 (2)
- 専門家の回答
お礼
言われてみればそうですよね… とってもわかりやすい解説ありがとうございました‼