締切済み 対角化可能性 2008/07/21 18:24 今線形代数を勉強しています。 そこで、ある行列に対して対角化可能かどうか判断するのに具体的に何をしたらいいのでしょうか。 みんなの回答 (1) 専門家の回答 みんなの回答 noname#75273 2008/07/21 18:30 回答No.1 http://oshiete1.goo.ne.jp/qa603223.html 通報する ありがとう 0 広告を見て他の回答を表示する(0) カテゴリ 学問・教育数学・算数 関連するQ&A 演算子を対角化するとはどういう意味ですか? 量子力学を学んでいます。 テキストを読んでいてよく「ハミルトニアンHを対角化して・・・」のような表現に出会います。 線型代数を学んだときには、行列Mを対角化することとは、ある行列Pを P^(-1) M P のようにかけて対角行列を作ることだったと思います。 そこで、ある演算子を対角化するとは具体的にどういうことなのですか? 線形代数 行列の対角化とユニタリー行列について 線形代数 行列の対角化とユニタリー行列について 行列Aをの固有値a1,a2,.....に対して固有ベクトルをv1,v2,.....とするとAを対角化する変換行列Pは P=(v1,v2,...)となりますよね?このとき対角化された行列は PAP^(-1)とP^(-1)APのどちらですか? 教科書によって違うので混乱しています。 また、Aが対角化可能かどうかは具体的にはどのように判断するんですか? というのも今までエルミート行列しか対角化したことなかったんです。 エルミート行列を対角化する変換行列はユニタリー行列であるという認識は正しいですか? ユニタリー行列の場合変換の際に基底の大きは保存されると思います。よって大きさが変わっていいならユニタリーでなくても対角化できそうなのですが。 一般的には対角化とエルミート行列とユニタリー行列の間にはどんな関係があるのでしょうか? 迷走した質問ですみません。よろしくお願いします。 線形代数の対角化の問題です。お願いします。 こんにちは。 独学で線形代数を勉強してしているものです。 早速ですが、力を貸していただけませんでしょうか・・・ /////////////////////////////////////////// 下記の行列をAとして、A^(-2)を求めよ。 | -3 0 2 | A= | -1 -2 -1 | | -2 0 2 | /////////////////////////////////////////// という問題なのですが、解けません。。 まず、対角化が出来なくて困っています。 固有値は、λ=-2(重解)、1 の2つだと思うのですが、 固有値を-2としたとき、固有ベクトルxを求めるにあたって、 Tx=0 とするべきTが、 | -1 0 2 | T= | -1 0 -1 | | -2 0 4 | となり、1行目と2行目で矛盾が生じてしまいます。 固有値の求め方が違うのでしょうか?全く分かりません。 また、対角化が出来たとしても、-2乗というのはどういう計算になるのやら さっぱり分かりません。 回答・解説の無い問題で困っています。 どうぞ宜しくお願いします。 対角化について 今日ずっと考えてたのですが、どうしてもわからないので、教えてください。 正方行列が直交行列によって対角化される場合、その行列は対称行列であることを示せ、という問題です。 すみませんが線形対数が並々ならぬくらい苦手なので、できるだけわかりやすくお願いします。 大学の数学「線形代数」;エルミート行列の対角化について 大学の数学「線形代数」;エルミート行列の対角化について 次のエルミート行列の対角化をしたいのですが、どうしたらいいですか。そのまま固有方程式を解こうとすると失敗しました。また、行列の基本変形で対角化しようとしましたがやはり無理でした。指針だけでも結構ですので、教えて下さると助かります。 ( 2 1 0 ) ( 1 1 i ) ( 0 -i 1 ) ( )はそれぞれ上から順に第1行、第2行、第3行を表している。iは虚数単位。 線形代数学の教科書 大学工学部の線形代数学の、問題が豊富で、その解説の詳しい参考書を探しています。線形代数ではありません。具体的にいうと面積・体積と行列式、行列式の計算、余因子行列とクラーメルの公式、固有値と固有ベクトル、正方行列と対角化、内積と転置行列、直行行列と実対称行列の対角化、二次形式の標準化、一般固有空間、ジョルダン標準形が載っているものです。 線形代数 線形代数 [0 1 2] [1 0 -2] [2 -2 -3] の行列は対角可能ですか? 線形代数 行列 対角化 対角化について質問させて頂きます。 対角化とは、 「正方行列を適当な線形変換により、もとの行列と同値な 対角行列に帰着させること。」 と説明がありました。 ここで、同値とは具体的にどのような内容を指すのでしょうか? また、対角化を求める際、 正方行列Aに対してP^-1APとなる正則行列Pを求めます。 この正則行列Pは正方行列Aより求めた固有値に属する固有ベクトル を並べたものになりますが、これはなぜですか? なぜ、固有ベクトルを並べたものが正則行列Pになるのでしょうか? 以上、ご回答よろしくお願い致します。 行列の対角化時、固有ベクトルとの関係は? 線形代数の講義で、、、 「A、B∈ベクトル空間V、線形変換をTとする。 対角行列A=T(B)=P-1 B P 」 というのは、先生の板書で なんとなくわかったのですが、 Tの固有ベクトルを、u1、u2、、、uN とすると、 何故 Pが(u1、u2、、、uN)という行列になるのか わかりません。 ご指導の程、お願いします。 対角化可能と固有ベクトル Pの逆行列をP^(-1)とします。このとき、P^(-1)AP=D(対角行列)を満たす正則行列Pを具体的に与え、P^(-1)APが何になるかを示しつつ、Pが正則行列になる理由、P^(-1)APがそのような形になる理由を説明し、 以上の点を踏まえ、n次正方行列Aがn個の線形独立な固有ベクトル a_1,・・・・a_n(固有値はp1,・・,pn)を持てば、Aは正則行列により対角化可能であることの証明です。 上記証明なのですが、どう進めていけばいいのかわかりません。 よろしくお願いいたします。 固有値が重複している行列の対角化 線形代数の質問です。 二次行列Aを、ある正則行列Pを用いて(P^-1)APと対角化するときのPを一つ求めよ、という問題があります。ここで、Aの固有値が二つあれば固有ベクトルも二つ求まりそれらを並べることでPがわかりますが、固有値が一つしかない場合はどうしたらいいのでしょうか。 教科書の例題を見ると、A=[a1,a2](a1=[3,-1]、a2=[0,2])のとき、固有値はλ=3で、[λI-A]x=0よりx+y=0となり、固有ベクトルは[1,-1]となります。このあとどのようにして正則二次行列Pを求めればいいのでしょうか。 どなたか御回答よろしくお願いします。 線形代数学 対角可能に関しての質問です。 f:V→V 線形写像 でfが対角化可能とは (i) Vのある基底に関する表現行列が対角化行列になること。 (ii) Vの任意の基底に関する表現行列が対角化可能であること。 (ii)⇒(i)の証明です。 詳しい解説よろしくお願いします 行列の積の可換条件 線形代数で二つのn次正方行列が可換になる条件とはどんなものなのか? 特に対角化できない行列Aに対し、交換可能な行列Bはどんなものか? それについて詳しく書いてある本を教えてください。お願いします。 線形代数学(2) もうひとつお願いします。 線形代数学の対角化の問題がわからないので解答をよろしくお願いしたいです。 1つ目 次の行列は対角化可能かどうか否かを判定せよ。また、対角化可能な行列については、その対角化を求めよ。 (1 -3) (2 -2) (1 2 0) (0 -1 3) (0 0 -1) 2つ目 定理10.1を用いて、次の行列Aの冪A^mを求めよ。 (1 4) (1 1) (2 -1 1) (1 1 2) (-3/2 1/2 -3/2) 定理10.1については画像を載せました。 行列式がかなり分かりづらいですが、 それぞれ2行2列と3行3列です。 よろしくお願いします。 対角化の可能性 「行列A={[1,0,0], [0,3,2],[0,0,1]}と固有値がすべて同じで、かつ対角化が不可能である3行3列の行列は存在する。そのような行列を、対角化が不可能である理由を添えて一つ考える。」という問題が分かりません。どなたか、回答よろしくお願いします。 対角化 行列を対角化したあとの行列で、対角成分は固有値になりますが、その順番はどういう決まりがあるんですか? しっているかた回答お願いします。 線形代数の質問です 線形代数の証明問題がわかりません。 AとBを3×3の実対象行列とする。 直行行列PによりAが対角化されるとする。 このときBがPに対角化されるための必要十分条件はAB=BAであることを示せ。 というものです。よろしくお願いします。 対角化について・・・。 対角化について・・・。 | 1 0 2 | A=|a-1 -1 a | | 0 3 a | という行列Aがあるとき この行列が対角化できないときのaの値の求め方を教えてください。 よろしくお願いします。 行列の対角化について 高校生です。 数Cの行列はだいたい理解していると思います。 独学で行列の対角化を勉強しているのですが、よくわかりません。 固有値、固有ベクトル、固有方程式の基本的は意味などはわかったつもりでいます。 対角化について、わかりやすく教えていただけないでしょうか? よろしくお願いいたしますm(__)m 実対称行列の対角化に関する理屈が正しいか判断願います。 実対称行列の対角化に関する理屈が正しいか判断願います。 (3 3 1) (3 9 -1) (1 -1 1)の実対称行列を対角化します。 固有方程式を作り、サラス式で展開すると固有値は0と(13±√(57))/2となります。 ここまでは、数学カテゴリの回答者の皆さまに確認いただいています。 ここからが疑問です。 そもそもこの行列は実対称行列であって固有値はすべて実数である、つまり、適当な直行行列で固有値を対角成分とする対角行列に変換できることが保証されているのだから、固有値を適当に対角に並べた行列が対角行列となる。 解は 1行目((13-√(57))/2 0 0) 2行目(0 (13+√(57))/2 0) 3行目(0 0 0) となる。 という考え方はどうでしょうか? 判断をお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 新幹線で駅弁食べますか? ポテチを毎日3袋ずつ食べています。 優しいモラハラの見抜き方ってあるのか モテる女性の特徴は? 口蓋裂と結婚 らくになりたい 喪女の恋愛、結婚 炭酸水の使い道は キリスト教やユダヤ教は、人殺しは地獄行きですか? カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど