- ベストアンサー
三角関数の合成の問題について
0°≦x≦90°のとき、2sinx+cosxの最大値と最小値を求めよ。(大学への数学IIP68) という問題があるのですが、 解答) 図1のようにαを定めると、45°<α<90°であり、 (図1とはx軸方向に1、y軸方向に2を取りその棒の距離を√5、なす角をαとした図です。) 2sinx+cosx=√5[cosx*(1/√5)+sinx*(2/√5)] =√5(cosx*cosα+sinx*sinα)=√5cos(x-α) 0°≦x≦90°により、-α≦x-α≦90°-αであるから、 x-α=0°のとき最大値√5を取り、 x-α=-α、つまりx=0°のとき最小値2sin0°+cos0°=1を取る。 (おわり) 何故最初にわざわざ45°<α<90°と置くのか分かりません・・・ どうかよろしくお願い致します。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (1)
- R_Earl
- ベストアンサー率55% (473/849)
回答No.2
お礼
sinを使っても合成問題を解けるのですね。 しかも分かりやすいです! >kは0°から45°の範囲の中にある とすることで、最大値のとりうる範囲を絞り出すのですね。 合成の本質が見える気がします。 ありがとうございました>_<