双曲線関数の図形的“意味”
三角関数 cos(t), sin(t) は、円のパラメータで、単位円の半径を斜辺とする直角三角形を描けば、cos^2(t) + sin^2(t) = 1 の関係式もすぐに読み取れます。cos(x+t), sin(x+t) で、角度 t の回転を表すこともできます。
ここで、双曲関数 cosh(t), sinh(t) は、双曲線のパラメータであることはわかるのですが、図形的に t とは“何”を示しているのでしょうか(三角関数でいうところの回転角にあたるもの)。変換が、座標を漸近線の方向にぎゅーっと引っ張って縮めていることも理解できるのですが、その動きのどこに t が表れてくるのかがわかりません。cosh^2(t) - sinh^2(t) = 1 の 1 も、一般的な三角関数の図解と同様に図示しても、見えてきません。
三角関数と双曲関数とを対比させ、同じように図形的に理解する方法はないでしょうか。Wiki や WolframMathWorld も検索したのですが、ヒントが得られませんでした。
うまく説明できていないかもしれませんので、適宜補足要求をいただければ幸いです。よろしくお願いいたします。