締切済み 幾何分布と負の二項分布 2007/12/08 21:35 幾何分布に従う確率変数の和は負の二項分布となると 教科書に載っているのですが理由が分かりません。 知っている方がいれば分かりやすくお願いします。 みんなの回答 (1) 専門家の回答 みんなの回答 zk43 ベストアンサー率53% (253/470) 2007/12/08 22:38 回答No.1 まじめにP(X+Y=k)を計算して負の二項分布の確率関数になることを見る か、あるいは、先の質問にあったX+Yの積率母関数を計算して、これが 負の二項分布の積率母関数になるかを見れば良いです。 二つの分布に対して、それぞれの積率母関数が存在して、それらが一致 すれば、この2つの分布は同じということは言えます。 質問者 お礼 2007/12/10 15:34 回答ありがとうございます。 その方法で確認が取れたとしても、 なぜそうなるのかという理由が分かりません。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 負の二項分布について 負の二項分布の平均 分散はそれぞれ rq/p rq/p^2 となりますが(q=1-p r回成功するまで) それの証明方法について質問です 幾何分布の初めて成功するときの平均と分散がそれぞれ q/p q/p^2 それをr回繰り返すということで 負の二項分布はr倍してあると思うのですが 幾何分布のr倍だから ということで証明することはいいのでしょうか この方法が駄目でしたらちゃんとした証明を教えていただきたいのですが 負の二項分布の積率母関数 負の二項分布の積率母関数がわかりません(><;) 二項分布の積率母関数だとM(t)=(pe^t+(1-p))^m と表せますよね??こんな風に負の二項分布の積率母関数も表せないでしょうか?? 独立な確率変数X、Yに関して、再生性を証明したいのですが・・・ どなたかよろしくお願いします!!m(_ _)m 負の二項分布の名前の由来 負の二項分布は、何故「負の二項分布」と呼ばれているのでしょうか。 昔どこかの教科書で、二項分布で何かのパラメータを負に拡張することで得られる、と読んだ覚えがある(うろ覚えですが)のですが、式をいじくってもいまいち分かりません。 よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 確率分布(幾何分布)について 今、確率変数X,YをX~Y~Ge(1/80):Geは幾何分布を示す。 の時に、min(X,Y)~Ge(1-(79/80)^2) とmin(X,Y)を幾何分布とみなせる理由がよくわかりません。抽象的な質問なんですが、ご指導お願いします。 確率論 幾何分布の問題です。 確率論 幾何分布の問題です。回答お願いします。 確率変数Xは幾何分布G(p)にしたがっているとする。 1.xを非負の整数として、確立P(X≧x)を求めよ。 2.Xの積率母関数を、その定義に従って求めよ。 まだ勉強したてなので詳しく教えていただけるとありがたいです。 幾何分布のP(X=x)=p(1-p)^xっていうのはわかるんですが、コレを使って求めるんですか? どうやっていいのかわかりません。 回答よろしくお願いします。 幾何分布と指数分布の関係 確率変数Xが平均λ^-1の指数分布に従っているとする。実数xに対して[x]をxを超えない最大の整数と定義して、整数値のみをとる確率変数Y=[X]はどんな分布に従うかを考えるときに 指数分布は幾何分布の連続版のようなものだと聞いたことがあるので幾何分布になるのだろうと思いますがこれはどのように説明したらよいのでしょうか??またそのときパラメータpはどのようになるのでしょうか??教えてください。 二項分布等について 二項分布と幾何分布とポアソン分布の違いについて教えて頂けたら幸いです。よろしくお願いいたします。 次の非復元試行の平均(負の超幾何分布?) 赤玉n、白玉m、n+m=N からなる集団から玉を取り出すとき 最初に白玉を引くまでに引く赤玉の数の 期待値を求めてやりたいです。 0: m/N 1: n/N * m/(N-1) 2: n/N * (n-1)/(N-1) * m/(N-2) : k: n/N * (n-1)/(N-1) *…* (n-k+1)/(N-k+1) * m/(N-k) 各試行は負の超幾何分布の成功回数が1回の場合に 当たると思うのですが、 ネットで調べてみると、負の超幾何分布の確率変数は 試行回数であったり、成功回数であったりばらばらで、 前者の場合の平均値の求め方がよくわかりません。 よろしくお願いします。 2項分布に関する問題 サイコロをN回投げたとき、確率変数Xiを、i回目に6の目が出れば1、その他の目ならば0とする。 またYi=X1+X2+・・・・+Xi(iは変数)とするとき、Y3の確率分布がY3~B(3、1/6)になる理由がいまいちピンときません・・・・。 YiはX1からスタートしているのになぜX0、成功回数が0回の値がYiに含まれて二項分布の形をとるのでしょうか? おそらく根本的になにかを勘違いしていると思うのですが、ご指導お願いします。 二項分布について 二項分布について 10回コインを投げて8回以上表が出る確率を二項分布で求めたいのですが、うまくいきません。 解き方として公式から、(10C8 × (1/2)^8)+、(10C9 × (1/2)^9)+、(10C10 × (1/2)^10)になると思うのですが、答えは(10C8+10C9+10c10)×(1/2)^10となります。 よくわからないのでお願いいたします。 確率統計の問題(幾何分布) 下の問題で答えをみても答えに至る道筋が理解できずに困っています。考え方を教えてください。どうも、確率変数(特に離散型)を足すという考え方が良くわかっていないようです。実際に計算で2つの確率変数の和,差,積.商を計算するといったことはできるのですが、確率変数の和というものがもっている意味を理解できていないような気がします。よろしくお願い致します。 問題. 確率変数Xは幾何分布 Ge(p)に従うとする. いまX_1, X_2, ..., X_nをGe(p)に従う母集団からの大きさ n の標本変量とする. このとき, Y=X_1+X_2+...+X_n の確率関数 P(Y=y) (y=0,1,2,...)を求めよ. 答え. yはn回成功を得るまでの失敗の数であるからYの確率関数は P(Y=y)=(y+n-1 C y) (1-p)^y p^n ポアソン分布 {Xj}を同一分布をなす互いに独立なベルヌーイ確率変数列とする(ここで、P[Xj=1]=p, P[Xj=0]=1-p)。SN=X1+X2+・・・+XNを確率変数Xjのランダムな個数N個の和とする。ここで、Nは平均λのポアソン分布をなすものとする。このとき、SNは平均λpのポアソン分布をなすことを証明せよ。という問いに対してなのですが、 Xj の和をとる個数 N がポアソン分布に従って変化するとき、Xj の和の分布を考えればよいことはわかりました。 N 個の確率変数の和が n になる確率は N C n p^n (1-p)^(N-n) であり、和を取る確率変数の数が N である確率はポアソン分布なので e^(-λ) λ^N / (N !) 和が n になる確率は、 確率変数が N=n 個でかつ和が n 確率変数が N=n+1 個でかつ和が n 確率変数が N=n+2 個でかつ和が n ・・・・ で N が無限個まで確率の和を取ればよいので、 Σ(k=0→∞)の{ (n+k) p^n (1-p)^k } と考えたのですが、ここから先に進めません。 おそらく途中で間違えてしまったと思うのですが、ご指摘いただけないでしょうか。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 二項分布の成功確率を求める方法 よろしくお願いします。 二項分布はある成功確率の事象を任意の回数、試行した際の確率分布ですね。 これは公式やexcelで解ける内容ですね。 逆に既にある確率分布の結果から簡単に成功確率を求める方法はあるでしょうか? 試行毎の式をいくつか作成して最終的な確率分布の結果(累積和)に合うように無理やり数値を代入していっておおよその値を求めることはできるのですがどうも格好良くありません。 ちょっと数学に弱いものですからなかなか妙案が浮かびません。 どうぞよろしくお願いします。 負の二項分布の導出の計算過程 負の二項分布を導出しています。 以下のリンクをご覧ください: https://shoichimidorikawa.github.io/Lec/ProbDistr/negativeBN.pdf 「この分布が負の二項分布と言われる所以は以下の通りである。まず、二項係数は…」に続く式の 【(r+x-1)(r+x-2)...(r+1)r】/x! = (-1)^x * 【(-r)(-r-1) ... {-r-(x-2)}{-r-(x-1)}】/x! の計算過程が分かりません。 10個ぐらいのサイトを見ましたが、 これ以上分解して書かれているサイトはありませんでした。 (-1)^xは、 xが奇数なら-1 xが偶数なら+1 になることは分かります。 それ以外はまったく見当もつきません。 どんなトリックを使ったのか教えて下さい。お願いします。 正規分布の再帰性について 現在大学生です。 統計学に関しての質問です。 互いに独立な2つ正規分布に従う確率変数の和の分布は正規分布になりますが、 完全に従属な2つの正規分布に従う確率変数の和の分布は正規分布になるのでしょうか。 例えば、ある正規分布に従う1つの確率変数の定数倍の分布は正規分布になるのでしょうか。 単純そうなのですが、考えれば考えるほど分からなくなるので、納得ができる説明をしていただけると幸いです。 よろしくお願いします。 二項分布B(30,1/3) X=10の確率? 確率変数Xが 二項分布 B(30,1/3)に従うとき, X=10となる確率を求めてください。 ・・・という問題で、 30 C 10 × (1/3)^10 × (2/3)^20 が P(X=10) となると考えました。 ところが、最初の30C10 を計算すると、ずいぶんと大きな数字になってしまうので、これで果たしてあっているのかが不安です。 ここまでの私の考え方はあっているでしょうか。 チェックをお願いいたします。 ベルヌーイ分布というものがありますが、もし確率変数Xが負になった場合、 ベルヌーイ分布というものがありますが、もし確率変数Xが負になった場合、このモーメント母関数はどのように求めればよいのですか? 例えば、Xが±1の場合などです。 二項分布、ポアソン分布、正規分布の問題 明日は確率のテストです。普段授業を聞いてないので勉強していて簡単な問題で躓いてしまいました。簡単だとは思いますが教えてください。 (1)不良品10%の製品の山から製品4個をでたらめにとる時この中に含まれる不良品の個数を確率変数Xにとる (a)P(X=2)を求めよ (b)P(X>=2)を求めよ (2)ある製品では1%が不良品である。不良品を少なくとも1つ含む確率が95%を越すためには、少なくとも何個の製品を無作為抽出しなければならないか? (3)確率変数Xが2項分布B(1000,1/2)に従う時、確率P(X>=400)の近似値を求めよ。 できればどういう公式を使って解いているのかも教えてくれたら幸いです。ずうずうしいとは思いますがヨロシクお願いします。 超幾何分布の特徴について 確率変数Xが超幾何分布に従っているときに P(X=j)=(Combination(G,j)*Com(R,n-j))/Com(N,n)となり P(X=j+1)=((G-j)(n-j))/((j+1)(R-n+j+1))*P(X=j)となり、これにより P(X=j+1)>P(X=j)となるのはj<((N+1)(G+1))/(N+2)-1となることがわかりました。Xが超幾何分布に従っているときjが増加するとあるところまでは確立が上昇し、その後下落することがわかります。このときに、 P(X=j)>0となるjの中でもっとも小さい値は何になるかを求めたいのですがどのような考え方をすればよいのでしょうか???ヒントによるとこれは0よりも大きく、またn-Rよりも大きいとのことですがどうすればいいでしょうか? 教えてください。 二項分布に従う確率変数の平均と分散 Xは二項分布B(n,p)に従う確率変数とする。 Y=e^Xとするとき,Yの平均と分散を求める。 わかりません・・・ 宜しくお願いします 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
回答ありがとうございます。 その方法で確認が取れたとしても、 なぜそうなるのかという理由が分かりません。