- 締切済み
ばねの振動数
ばねの振動数の公式ν=1/2π√k/mをF=-kxの式から導くとき、どのような計算になるのでしょうか? 急に必要になってしまったので、本当に初歩的で申し訳ないですが、どなたか教えてください…!お願いします。
- みんなの回答 (3)
- 専門家の回答
みんなの回答
- tur_bo
- ベストアンサー率18% (16/85)
自力で解こうとしたらギブアップでした。 http://www.buturigaku.net/main01/Mechanics/Mechanics15.html ↑ここに詳しく書いてあります。 F=-kx の式を m(d^2x/dt^2)=-kx という運動方程式にして、微分方程式の形からsin関数を導けばよいみたいですね。
下のサイトの式(1-V)あたりからをごらん下さい。 http://ja.wikipedia.org/wiki/%E6%8C%AF%E5%8B%95%E9%81%8B%E5%8B%95 あるいはこちらのサイトの方がわかりやすいかも知れません。 http://www.buturigaku.net/main01/Mechanics/Mechanics15.html
お礼
ありがとうございました!wikipediaってこんなことまで載ってるんですね…!参考になりました^^
- inara
- ベストアンサー率72% (293/404)
バネ定数 k [N/m] のバネに質量 m [kg] の物体がついているときの物体の運動方程式は m*d^2x/dt^2 + k*x = 0 --- (1) で表わされます。x は物体の位置 [m] です。この解を x = A*sin( ω*t ) としたときの ω ( = 角周波数 [rad/s] = 2*π*ν ) から、振動数 ν [Hz] を計算したのがその公式です。 x = A*sin( ω*t ) ならば、dx/dt = A*ω*cos( ω*t ) 、d^2x/dt^2 = -A*ω^2*sin( ω*t ) なので、式(1)は -m*A*ω^2*sin( ω*t ) + k*A*sin( ω*t ) = 0 → -m*ω^2 + k = 0 → ω = √( k/m ) ω = 2*π*ν なので ν = ω/( 2*π ) = √( k/m )/( 2*π ) ご質問は ν = 1/2π√k/m となっていますが、括弧と * を使って、√の範囲と乗除の範囲を正確に書くようにしてください。
お礼
すばやい回答ありがとうございます!参考になりました。 表記が分かりにくくてすみません、気をつけますm(__)m
お礼
回答ありがとうございます!参考になりました^^