力学 円運動と単振動
下図のように鉛直部分AB, 水平部分BC, および点Aを中心とする半径Rの円弧部分CDからなる、滑らかで細い針金がある。点A,B,C,Dは同一円直面内にあるものとし、AC=AD=R, ∠BAC=αとする。また、点A,Dの高さは同じであるとし、点Cで水平部分と円弧部分は滑らかにつながれているとする。さらに、重力加速度の大きさをgとする。
(1)
この針金の円弧部分CDに、穴の開いた質量mの小球を通し、ABを回転軸として一定の加速度ωで針金を回転させたところ、小球は、CD間のある点Pに位置させたときに、針金に対して静止(針金とともに回転)した。このとき、点Pで小球が針金から受ける垂直抗力の大きさは、m, R, ωを用いて(ア)と表される。また、線分ABとAPのなす角度をθ(α<θ<π/2)とすると、R, g, ωを用いて、cosθ=(イ)と表される。
(2)
次に、(1)と同様に、ABを回転軸として一定の角速度ωで針金を回転させ、針金とともに回転する観測者からみて、小球を点Pに静止させておく。この状態から、小球に円弧CDにそって微小な変位を与えたところ、小球は点Pを中心に(円弧CDに沿って)振動し始めた。以下では、円弧CDにそって点Pを原点とする上向き(C→D向き)正のx軸をとる。また、力、変位、加速度の円弧CDに沿った方向成分(円弧CDの接線方向成分)は+x向きを正とし、以下で用いるΔθは、その符号が小球の位置のx座標の符号と一致するようにとるものとする。
小球が点Pから微小変位した瞬間の、小球と点Aを結ぶ線分とABとのなす角をθ+Δθとし、この瞬間の小球の加速度のx成分をa(+x向き正)とする。この瞬間における小球のx方向の運動方程式は、m, a, g, R, ω, θ, Δθを用いて、ma=(ウ)と表される。さらにこのとき、|Δθ|≪1であることより、小球の加速度aは、R, ω, g, Δθ,を用い、2次以上の微少量は無視して、a=(エ)と表される。ただし、必要であれば、|Δθ|≪1のときに成り立つ近似式
sin(θ+Δθ)≒sinθ+Δθcosθ, cos(θ+Δθ)≒cosθ-Δθsinθ
を用いてよい。
問
このときの小球の運動は、点Pを中心とする単振動とみなせる。その周期を求めよ。
自分の解答↓
(1)
力のつり合いより、
mg=Ncosθ, mRω^2sinθ=Nsinθ
これを解いて、N=mRω^2, cosθ=g/Rω^2
(2)
小球と点Aを結ぶ線分とABとのなす角がθ+Δθとなったとき、小球に働く遠心力はmRω^2sin(θ+Δθ)であるから、この点における円弧CDの接線方向の運動方程式はma=mRω^2sin(θ+Δθ)cos(θ+Δθ)-mgsin(θ+Δθ)
よって、a=Rω^2sin(θ+Δθ)cos(θ+Δθ)-gsin(θ+Δθ)
与えられた近似式を用いて
a=Rω^2(sinθ+Δθcosθ)(cosθ-Δθsinθ)-g(sinθ+Δθcosθ)
=Δθ(g^2/Rω^2-Rω^2)-(Δθ)^2gsinθ
(Δθ)^2は無視できるので、
a=Δθ(g^2/Rω^2-Rω^2)
ここまでは一応自力でできたのですが、この単振動の周期の求め方がわかりません。単振動の周期というと、単振動の角振動数をbとでもおき、ma=-b^2xからbをもとめて、周期T=2π/bというように求めるのが普通だと思うのですが、振動中心からの距離xが角度θである場合も同様に周期を求められるのでしょうか?