- ベストアンサー
問題の解き方の解説について
お早う御座います。 解き方の説明で、分からない部分があるので質問します。 ==== 自然数x、y、zについての等式 xy + yz + zx + 1 = xyz 上の等式が成り立っている。このような自然数の組(x、y、z)を 全て求めよ ==== 途方もないものはアタリを付けて考えるという題目で出された問題 なのですが、解説のある部分がどうしても分かりません。 解説には以下のようにあります。 ---- x、y、zに衝いての対照式は、「対称性を崩せ」と言われるが、これは x、y、zを大小順に整理することに他ならない。そこで次のように解く。 x≦y≦zの場合を考える(対称性を崩す) ここで最小の数xに着目すると、x≦4でなければならない。 なぜならx≧5だとすると、 左辺 ≦ yz + yz + yz + yz = 4yz ----「イ」とする 右辺 = xyz ≧ 5yz ----「ロ」とする このようになって矛盾するからである。 (以下x=4からx=1の時まで場合に分けて計算して答えを求める) ---- 「ロ」はx≧5であるからxyz ≧ 5yzになるのは分かり、全体として、右 辺は5yz以上になるが、左辺は4yz以下になるため、矛盾すると言っ ているのは分かるのですが、「イ」は何故このようになるのですか。 与式の左辺xy + yz + zx + 1のxに仮に5を代入しても5y + yz + 5z + 1 となり、「イ」のようにyz + yz + yz + yzとならないのですが・・・。 宜敷御願い致します。
- みんなの回答 (3)
- 専門家の回答
お礼
左辺はxに5を代入して因数分解や展開で使うような手法で解釈を付 けて、全項をyzに変えるのだろうと思い込んでいたので、二番の方 のものと読み比べ、紙に書いて実践することで、漸くその思い込み が解けました。本当に単純なことでしたね。 有難う御座いました。