- 締切済み
無理数や無限に区切れる小数を含めた場合でも、不完全性定理は成り立ちますか?
無限小数や無理数を導入すると、不完全性定理は成り立たなくなるでしょうか? お答えお願いします。
- みんなの回答 (6)
- 専門家の回答
みんなの回答
- MySalt
- ベストアンサー率25% (1/4)
>「”数ではない”無理数」に、「不完全性定理」を当てはめる事はできますか? なるほど、こうして見れば確かにご質問は一貫して一点のみでしたね。 私を含めて全ての人は、ご質問者さんがまさか「無理数は数ではない」などという 大きな間違いをおかしているとは思わなかったので、ここにたどりつくまで 苦労してしまいました。 然り。無理数がもし数でなければ、不完全性定理を当てはめる事は できません。 でも、無理数は「数」です。厳密に言うなら、実数(無理数を含む)は、 同じ値に収束する有理数の点列の同値類から構成したりしますので、 やはり「数」です。「無理数とは何か」をご勉強なさるといいでしょう。 10進展開で表現しきれない程度のことで「取扱不可能」になるほど、 数学はヤワではありません。 裏を返せば、「無理数が数ではない ⇔ 無理数は自然数から構成できない」 ということになりますが、「数学的に構成不可能」であることと、「学が 足りないためにある一個人においては構成不可能」ということは 話が違います。すでに何百年も前に、実数(無理数含む)は矛盾なく 構成され、完結しています。 しかしまた、数学は、「こういうものを無理数と呼ぶ」と言っている だけにすぎません。量子論とか何だとかが無理数であるということには 一言も言及していません。だから、その量子論と、無理数ではないもっと 別の新たに定義された(しかも自然数論を含まない)体系とを結び つけることができれば、おそらくご質問者さんの目的だと思われる 「量子論は不完全性定理の制約を受けない」ということも示される 可能性はあろうかと思います。 無理数ごとき(と言っては無理数に失礼ですが)初等的なたかだか 循環しない無限小数程度のものでは、量子論は表現できないのでは ないでしょうか。これは私の専門を外れるので断定は避けますが、 もっと高度な概念、私などでは知りえず、質問者さんのような高い レベルの知識をお持ちの人でしか到達し得ない概念で、量子論と 一種の「同型」を表現できる何かが見つかれば、また一歩進むことが できるのではないかと思います。 どうぞがんばってください。 私もそろそろ、自分で作った自分自身のキャラに耐えられなくなって きたので、この辺で終わっておきます。バトンタッチ。
- MySalt
- ベストアンサー率25% (1/4)
#2、#4です。 >ひらめきの定量化については答えていただいていませんね。 #4で長々と書かせてもらいましたが、そこに「答えていない」理由は ちゃんと書いたつもりでした。つまり、それは数学ではないから、 私にはわかりませんし、このカテゴリーの質問としても適当では ないですし。(もっと言うなら、全ての質問にお答えする義務も ないので、単に理解の助けになるかと思い、私のわかる範囲の ことを書いただけです。) もし、質問者さんがお持ちのすばらしい知識を使って「ひらめき」が 無矛盾に定量化できれば、そこから先は数学の出番でしょう。そこに 至るまでの疑問をぶつけるなら、うーん、物理学?生物学?心理学? どのカテゴリーが適当でしょうかねぇ。 >量子論は不完全性定理が成り立つ数列かどうかも答えていただいていません。 量子論が数列? 私にはわかりませんが、いかなる数列を成しているのか ご面倒でも書いていただければ、私か、私以外の誰かが回答するかも しれません。いずれにしても、「数列」もまた「自然数論」を含んで いるので、再三再四になりますが、不完全性定理の支配下にあると いっていいでしょう。物事の一性質が無限である程度のことで、 不完全性定理を脱することはできません。 というよりむしろ、複雑にすればするほどますます不完全性定理に 束縛されるというのがゲーデルの骨子の一つともいえるでしょう、 または、系が「普通の思索」によっては完全に理解し得ない とも言い換えることができると思います。系自身の(もっと高い レベルの意味での)不完全さを謳っているわけではありませんので、 その「高いレベルからの思索」を考えるのが突破口の一つです。 自然数では不完全だから、実数(無理数を含む)を考えよう。 有限集合では不完全だから、無限集合を考えよう。 実数でも不完全だから、複素数を考えよう。 このように、不完全を補うべくいくら拡張しても、ついに終わりは 来ないというのが不完全性定理が言うところの一つの意味です。 逆に言うなら、「高いレベルの思索」によって自然数を完全ならしめる ことができれば、高々自然数をほんの少し拡張した程度の無理数なども、 同じように高いレベルの概念が適用できることでしょう。そのような 取り組みに成功した話は聞いたことないですし、そういう研究者が いるかどうかは私は知りませんけど。がんばれば、質問者さんがその 「最初の人」になるかもしれませんね。 念のため言いますが、私も「完全」とか「不完全」とか「思索」という 言葉を厳密さ無しに使っています。短く文章をまとめるためにこうして いますが、物事を厳密に考えるときはこれらの厳密な定義に立ち返る ことを怠ってはいけません。 >波束の収束についても答えていただいていません。 同じく、わかりません。なんか、まるで回答者は全ての質問に 答えなければならないかのような印象を受けますね。いや、 私の思い過ごしかもしれませんが。 売り言葉に買い言葉、というわけではありませんが、無理数の「何が」 無限(という意味でお書きになっている)なのか、お答えいただいて ませんね。もちろん、私にはご回答を強要する権利などありませんので、 スルーしていただいても結構です。ただ、それが我々読み手にわかれば、 また一つお答えできることも増えるのではないかと思いまして。
補足
あなた、外国人で、翻訳プログラムを使っていますね? それはさておき。 意識は無理数であると考えています。 無理数は、「無限の揺らぎ」を持っています。 「∞の桁数」を持つのが無理数というわけではなく、 つまり「無限の桁数」と言う事は、 無理数は「数ではない」という事です。 量子論を数で表そうとしたもの、その結果が無理数であると考えています。 無理数の、「無限に数列が続く」というのは、 つまり即ち「無理数は数では表記しきれない」という事です。 この世界で唯一、数が記述できないもの、 それが「無理数」です。 ですから私は、 量子論は無理数で、精神は無理数によって記述するしか方法がないから、 意識は不完全性定理が成り立たない、その上の存在だと言っているのです。 又、無理数には、 「世界のあらゆる数列が含まれています」。 無理数の∞の桁の中には、 あなたの誕生日も、地球の自転のスピードも、全て含まれています。 つまり、無理数は、アカシックレコードです。 ∞の情報量を記憶媒体、それが無理数です。 特異点であり、ZPTであり、真空エネルギーでもあります。 質問は一点です。 「”数ではない”無理数」に、「不完全性定理」を当てはめる事はできますか? 以上です。
- MySalt
- ベストアンサー率25% (1/4)
>「直感」「ひらめき」が起こる理由を、数学で証明したいですね。 これは、数学で扱う対象(命題)ではありません。数学の証明とは、 他の学問に比べて強力である反面、極めて限定的なものであるとも いえます。#3さんの言葉をお借りするなら、 >有限個の公理と有限個の推論規則から理論を展開する のが、数学の証明です。公理を無批判に認め、推論規則と言う名の 単なる記号操作を「証明」と呼んでいるだけに過ぎません。最初の 出発点である公理は無矛盾でありさえすればよく、実在の地球や宇宙の 現象を正しく記述している必要はありません。このような数学の姿勢は、 一方では「この世にあるかどうかわからないものまで対象にでき、 実在を検証する必要なく論理が展開できる」というメリットがある反面、 「この世のなんらかの現象・存在を示すことは一切できないし、『なぜ』 に答えることもできない」というデメリットがあります。 しかしながら、直感やひらめきが起こる理由を考えることは良いことだと 思います。その一部には「数学の証明」を使い、足りない部分は 他の学問のエッセンスを含めるといいと思います。 さて、私も言葉的にラクなので「不完全」と一言で表現してますが、 ゲーデルが何を示していたか、不完全性定理とは何かということは 常に念頭に置いておく必要があります。不完全性定理とは、ある系 (自然数とか実数とか無理数)が無矛盾であるならば、真偽を決定 することができない命題が存在し、また自身の無矛盾性を証明することが できないというものです。「不完全」というセンセーショナルな言葉 の響きが持つ、「概念的に不完全で、神の領域に達するには不十分」 というようなイメージは捨て去ったほうがいいでしょう。 無理数という言葉がよく出てきますが、無理数とはご存知の通り、 整数の比では表すことが出来ない実数のことです。これが「無限」 であるとか「数え切れない」と一言で言ってしまうには、少し 言葉足らずのように思います。無理数の個数(濃度)が無限なのか、 無理数を10進展開したときの桁数が無限なのか、あるいはそれ以外 の意味なのかが読み手にはわかりにくくなっています。 文脈からはある何らかの一つの無理数aが「無限である」ということに ついて述べられているように思うのですが、その意味で言うと、小数点 以下の桁数のことになるのでしょうか。数を10進で表現できようが できなかろうが、そのこと自身は大した意味は持たないので、ここから 何かが数学的に導かれることはあまりないでしょう。私が文脈を 取り違えていたらすいません。 >∞の選択肢(確率)があるという事と無理数を絡めて 物事と物事を絡めるのは良いことです。ただ、学問を展開するなら、 「無理数の○○が無限という性質を持つので、××という性質が 成り立ち(あるいは成り立たず)、これこれこういう推論を経て、 △△が示される」 という感じに思索を進めていくとよいと思います。「何か似ている っぽいから絡めて、イコールにしてしまおう」という単なる直感は、 数学の論理展開の手法ではありません。 ただ、何度も言いますが、そういう直感を排除して、真実とか実在とかに 対するアプローチを犠牲にしたことで、数学は「厳密さ」を獲得して います。要は、「これを示すには数学、それを示すには他の学問」と いうふうな適材適所ですね。宇宙は、数学ごとき狭い学問だけで 語り尽くせるような存在ではないのですから。 学問の境界を越えて、今後もがんばってください。
補足
ひらめきの定量化については答えていただいていませんね。 不完全性定理の意味はもちろん理解していますよ。 「何となく、世界は不完全」なんて思ってません。 不完全なのは「世界を知る事」についてです。 量子論は不完全性定理が成り立つ数列かどうかも答えていただいていません。 波束の収束についても答えていただいていません。 よろしくお願いします。
- proto
- ベストアンサー率47% (366/775)
つまり、 無理数・有理数・実数全てを入れても不完全性定理は成り立ちます。 人間の知性について、 コンピュータを数学的に理想化したチューリングマシンというものがあるんですが、おそらくチューリングマシンに不完全性定理は証明できないでしょう。 それはチューリングマシンが有限個の規則から構成されているからです。 チューリングマシンには、自分自身に証明できない命題があることを証明できないのではないかと思います。 ですが人間(クルト・ゲーデル)は不完全性定理を証明しました。 その意味では人間の知性はコンピュータを超えたものである、という考えもできます。 しかし、それは人間の知性が不完全定理を超えたこととは違います。 人間が有限個の公理と有限個の推論規則から理論を展開する限り、不完全性定理に従い真偽の決定が不可能な命題が必ず存在します。 よく言われる言葉を借りれば、『不完全性定理は人間の知性の限界を示した』ということです。 ちなみに不完全性定理は正確には数学の定理ではなく、論理学の定理ですので、自然数論を含むようなすべての公理を支配していることになります。 たとえば集合論・自然数論を用いて「すべてのアルファベットで書かれた文法的に正しい文章の集合」を構成することができるらしいです。この集合はもちろん文章云々について論じるときに用いられますが、自然数論を含んで構成されていますので不完全定理が成り立つのでしょう。 しかし一方で人間には直感というものがあります。 公理系に組み込むべき公理を選ぶときには、もちろん公理なので証明なしに真であると思うような公理を採用します。 もちろん無矛盾であることは要求されますが、それ以外でどの公理を採用するかは直感に頼るほかありません。 ある公理が成り立つと直感できる能力を考えると、人間は論理を超えた存在であると言えるかも知れません。 まぁ、いつでも他の人と同じように正しく直感できるという保障はありませんから、真なるひとつのものを求め論じていくには多少不都合があります。 具体例を挙げると、過去に背理法を認めるかどうかの論争や、平行線公理の違いによるユークリッド幾何と非ユークリッド幾何の誕生、変わったところでは「熱力学第二法則の証明は可能か?」の話などがあります。 もし興味があればどうぞ。
補足
それでは、 「直感」「ひらめき」が起こる理由を、数学で証明したいですね。 出来ますでしょうか? もし、全ての数列は不完全性定理が成立するのであれば、 「人間は数を超えた世界の力を持っている」ということになりますが。 量子論を数値化すると無理数になりますよね。 ∞の選択肢(確率)があるという事と無理数を絡めて、 もし量子論の定量化が「不完全性定理の外」であるなら完璧だと思ったのですが。 これについも意見をお願いします。 波束の収束はどの様な数字で表されるかもお願いします。
- MySalt
- ベストアンサー率25% (1/4)
>無理数において不完全性定理が成り立つか、それだけお願いします。 >又、無限小数で不完全性定理が成り立つ理由もしっかりお願いします。 #1さんが、既にこの問いに答えておられます。 繰り返しになりますが、整数(もっと言えば自然数)を含む系では 不完全性定理が成り立ちます。ここからどれだけ系を拡張しても、 不完全性定理が成り立たなくなることはありません。無限小数や 無理数も自然数を出発としますから、不完全性定理は成り立ちます。 自然数⊂無理数 ではないですが、このような集合の包含関係と「無理数が自然数から拡張 されている」という事実は関係ありません。実数から有理数(自然数を含む) を取り除いた無理数に限定しても、それが自然数「論」を含んでいる ことには変わりありません。したがって、不完全性定理は依然として 成り立ちます。 >無限小数で不完全性定理が成り立つ理由もしっかりお願いします。 これを「【無限小数で】不完全性定理が成り立つ理由~」 と読むなら、以上が理由です。また、 「無限小数で【不完全性定理が成り立つ】理由~」 と読むなら、ゲーデルをお読みください。 (日本語って難しいですね。修飾関係を2通り以上の捉え方で 読めてしまいますから。) 蛇足ですが、無限小数というのは所詮10進数で考えたときの分類に 過ぎませんから、数の体系を考えるときは有理数・無理数・実数などに 分類して考察するのがよいと思います。 もう一つ蛇足ですが、「不完全性定理」とはなにやら対象が不完全で あるような言葉の響きですが、集合と自然数の公理を用いて数学的手法に よる証明(証明とは何か、もしっかり定義されている)での一種の限界を 示している定理です。何か数学的手法を超越した我々の知りえないレベルで 見ても「不完全である」と言っているわけではありません。仮に、人類が未だ 知りえない高度なレベルで自然数を含む体系が「不完全ではない」ことが 示されたとしても、「【ゲーデルの】不完全性定理」に誤りがあるわけでは ありません。ゲーデルは、その高いレベル(あるのかどうかわからないけど) については言及していないのですから。ま、この辺は言葉遊びの域ですが、 念のため。 ゲーデルを超える「何か」が見つかるといいですね。
お礼
不完全性定理は、 「全ての数字」を支配する法則なのか、 或いは 「例外」を自然数以外の中から見出すことが出来るのか、 解説と共にお願いします。
補足
つまり、 無理数・有理数・実数全てを入れても不完全性定理は成り立つということですか? その場合、例えば 「人間が不完全性定理を超えた能力で知的な活動をしている」というのはどう表すのかな、と思いまして。 もり無理数であれば不完全性定理が成り立たないのであれば (なぜかというと、無理数は∞に数え切れないわけだから、数が永遠に続いて比較の対象にすら出来ない、との考えがあったので。) 人間が自然数以外を情報処理している事により、 人間は「不完全性定理を超えた知を持っている」と証明できると思ったのですが。 コレについてはどうですか? レスどうも。
- proto
- ベストアンサー率47% (366/775)
不完全性定理は少なくとも整数論を含むような公理系で成り立つようです。 少なくとも整数の足し算や割り算などが出来る系ならば、という軽い制約ですね。 整数を拡張していって、有理数→実数と理論展開していくのですから、実数を扱う基礎には整数論があるでしょう。 無限小数が扱える系は(少数部が0の数として)整数も扱えるのが当然でしょうから、不完全性定理も成り立つと思います。 逆に、整数の取り扱いを考えないほど単純でシンプルな系ならば、不完全性定理が成り立たないものもあるようです。
補足
実数ではないです。 無理数において不完全性定理が成り立つか、それだけお願いします。 又、無限小数で不完全性定理が成り立つ理由もしっかりお願いします。
お礼
ありがとうございます。 数学では、「一つの状態」は座標等で記述できますが、 「幾つもの可能性がある」事を記述できますか? 例えば、色々な選択肢が同時に存在する事を、記述する方法はありますか? その上で、 「その可能性が∞」だったら、∞でしか記述できませんよね。 質問の仕方を変えます。 「∞」に対して、不完全性定理は成り立ちますか?
補足
無理数は数? それならπを数を表現してみてください。 何桁使ってもいいですから。 よろしくお願いします。