パラメータ消去について
tがすべての実数値をとって変化するとき、P(2t-1,(4^2)-1)の軌跡を求めよ
というものについて、Pの座標を(X,Y)とおくと
X=2t-1 Y=(4^2)-1 と置けますよね、 そこでXを式変形してt=に直し、Yの式に代入しパラメータ消去する というのはよくやることで、何も考えずにやっていましたが。パラメータtが消去されちゃうってことはどういうことなんでしょうか・・・?
tによってx,yが定まるのにtを消しちゃっていいのか? tがなくなったということはtによらない関数だということか? けどパラメータというのは、tの値によって、x,yが変動するものだから、tは必要だ。あくまでもその軌跡がもとめられただけだ・・・ などと考えてましたが・・・。
☆つまり何がいいたいかというと、X= ~t ,Y= ~t とパラメータ表示されているものの軌跡の取りかたは、本質的な意味では、t=1,2,3・・・ などと点を細かくとっていき、それでできる方程式が軌跡である。ということだと思うのですが、t=~Xの式に直し、パラメータを消去しちゃったら、tにすべての値を代入した時のグラフ(軌跡)がいっきに求まってしまうとは・・・ なぜなんだろう・・・?と疑問に思いました。
☆あと別の問題ですが、軌跡を求める問題で、軌跡の方程式が、(X^2)+(Y^2)+4X=0とまで変形できたときに円だ、とピンとくるべきですよね。x^2 y^2 が含まれていたら円だ!と思っていいでしょうか?
楕円とか、双曲線ってのも問題によってはあるんでしょうか・・・?
ちなみに高3です・・・ よろしくお願いします