- 締切済み
式の証明です。
関数f(x,y)を ∂^2f/∂x^2 + ∂^2f/∂y^2 = 0 を満たす関数とする。円Cを点(a,b)を中心とした半径rの円とするとき f(a,b) = 1/(2π)∫{0~2π}f(a+rcosθ,b+rsinθ)dθ が成立することを証明しなさい …という問題なのですがどうやっていいものか悩んでいます。 できれば詳しく回答してくれると大変助かります。 よろしくお願いします。
- みんなの回答 (2)
- 専門家の回答
関数f(x,y)を ∂^2f/∂x^2 + ∂^2f/∂y^2 = 0 を満たす関数とする。円Cを点(a,b)を中心とした半径rの円とするとき f(a,b) = 1/(2π)∫{0~2π}f(a+rcosθ,b+rsinθ)dθ が成立することを証明しなさい …という問題なのですがどうやっていいものか悩んでいます。 できれば詳しく回答してくれると大変助かります。 よろしくお願いします。