ベストアンサー 数学I 基本対称式を使った問題 2025/01/23 19:09 x^2+y^2の基本対称式と x^3+y^3の基本対称式を用いて x^5+y^5の変形をするのですが 画像の赤いアンダーラインの部分が どのように導き出されたか理解できません。 どなたか教えてくださいませんかm(__)m よろしくお願いします。 画像を拡大する みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー muturajcp ベストアンサー率77% (511/658) 2025/01/26 17:06 回答No.3 x^5=x^2(x^3+y^3)-(x^2)(y^3) y^5=y^2(x^3+y^3)-(x^3)(y^2) x^5+y^5 =(x^2)(x^3+y^3)+(y^2)(x^3+y^3)-(x^2)(y^3)-(x^3)(y^2) =(x^2+y^2)(x^3+y^3)-(x^2)(y^3)-(x^3)(y^2) 画像を拡大する 質問者 お礼 2025/01/27 18:22 ご丁寧にありがとうございます!! とても助かりましたm(__)m 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) f272 ベストアンサー率46% (8653/18508) 2025/01/23 22:22 回答No.2 (x^2+y^2)(x^3+y^3)を展開して、x^5+y^5との差を考えればでてきます。 ところで基本対称式ってなんだかわかっていますか? 質問者 お礼 2025/01/26 10:14 ごめんなさい。間違えていました。 基本対称式はx+yとxyのことでした。 ご回答ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 muturajcp ベストアンサー率77% (511/658) 2025/01/23 20:59 回答No.1 x^5+y^5 =(x^2)(x^3)+(y^2)(y^3) =(x^2)(x^3+y^3-y^3)+(y^2)(x^3+y^3-x^3) =(x^2)(x^3+y^3)-(x^2)(y^3)+(y^2)(x^3+y^3)-(x^3)(y^2) =(x^2)(x^3+y^3)+(y^2)(x^3+y^3)-(x^2)(y^3)-(x^3)(y^2) =(x^2+y^2)(x^3+y^3)-(x^2)(y^3)-(x^3)(y^2) 画像を拡大する 質問者 お礼 2025/01/26 10:10 画像までご丁寧にありがとうございます。 質問なのですが、 画像の3行目にあるx^2(x^3+y^3-y^3)のy^3-y^3と y^2(y^3+x^3-x^3)のx^3-x^3は どこからきたのですか? 回答いただけると幸いですm(__)m 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学 対称式 x=1-√3,y=1+√3のとき,y/x+x^2+y^2+x/yの値を求めよ。 という問題でy/x+x^2+y^2+x/y=(y^2+x^2/xy)+x^2+y^2={1+(1/xy)}{( x+y)^2-2xy}という途中式が有りまして、 {(x+y)^2-2xy}この式は基本対称式を利用してx^2+y^2が{(x+y)^2-2xy}に変形したと分かるのですが、(y^2+x^2/xy)が{1+(1/xy)}この式に、どうやって変形したのかが分かりません。詳しく細かく教えて下さい。 代数学(基本対称式の問題)の解き方が分かりません x^3+y^3-z^3-(x+y)^3-(y+z)^3-(z+x)^3 を基本対称式で表せ. 展開したり,公式を使ってみたりしたのですが手が出ません. 解法を教えて下さい. 宜しくお願いします. 基本対称式をべき和対称式で表したい 任意の対称式は基本対称式で表すことができる、というのは基本的ですが、基本対称式をべき和対称式で表すことができることを証明するにはどうしたらよいでしょうか。具体的なnについてはもちろん求められますが(たとえばx_1x_2={(x_1+x_2)^2-(x_1^2+x_2^2)}/2)、うまい数学的帰納法か何かアイデアがないと一般の場合の証明ができず困っています。 べき和対称式というのは、x_1^k+x_2^k+…+x_n^kのタイプの対称式のことです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数学の対称式について 現在高校1年生で対称式を学んでいます。 対称式は普通のは解けるんですが、分数になるとまったく理解できなくなります。 式が分かりにくいかもしれませんが教えてください。 分からないのは分数の式の読みかえです。 y/x + x/y = x二乗+y二乗/xy と言う読みかえですが、 これの正しい途中式は y/x + x/y = y二乗/xy + x二乗/xy = x二乗+y二乗/xy です。この式の ↑ここまでは分かります。 しかし、 y/x + x/y = y二乗/xy + x二乗/xy = x二乗+y二乗/xy →ここから分かりません。 y/x + x/y = y二乗/xy + x二乗/xy = x二乗+y二乗/xy ↑分母分子にyを ↑分母分子にxをかけてるのは分かります。 すると、 僕の考えでは、 y二乗/xy + x二乗/xy = x二乗+y二乗/xy+yx になると思うのです。 なぜ y/x + x/y の読みかえは x二乗+y二乗/xy+yx ではなく、x二乗+y二乗/xyになるんですか? 対称式 x=1-√3,y=1+√3のとき,y/x+x^2+y^2+x/yの値を求めよ。 で、 (1)y/x+x^2+y^2+x/yが,y^2+x^2/xy +x^2+y^2になる理由。なぜ二乗が2つになっているのですか。これが、対称式でyx,xyとx^2+y^2を入れ替えたのなら、なぜx^2+y^2/x^2+y^2 +xyにならないのですか。 (2)(1+ 1/xy){(x+y)^2-2xy}になる理由を教えて下さい。 {(x+y)^2-2xy}は、基本対称式でx^2+y^2だと分かりますが、なぜy^2+x^2/xyが(1+ 1/xy)になるのか分かりません。 対称式の第一基本定理の証明・・・ 《対称式は基本対称式{e1,e2,…,en}の多項式としてただ一通りに表させる。つまりSはn変数の多項式環と同型です。》 という定理の証明がわかりません。 C[y1,y2,・・・,yn]∋F(y1,y2,・・・,yn)→F(e1,e2,…,en)∈S (C[y1,y2,・・・,yn]はn変数{y1,y2,・・・,yn}の多項式環S=S(x1,x2,…xn):対称式全体を表す。) この全単射を示せばいいことがわかり、単射の証明はできたのですが、全射の証明方法がわかりません。 複素係数の対称式が基本対称式の多項式として表されたらOKなのでしょうか? n変数ともなり、2、3変数のように簡単に証明ができないため、頭を抱えています。回答のほど、よろしくお願いします。 基本対称式、イデアル T=ΣC[x1,x2,...,xn]ei (←Σはi=1からnまでの和) ={Σfi(x)ei |fi(x)∈C[x1,...,xn]} Tをこのようにおきます。 (後半は集合として表しています。) ___________________ 【注意点】 C[x1,x2,...,xn]はn変数複素係数多項式環 eiは基本対称式を表しています。 (※xnのnは添え字です。) (※ei、fi(x)のiは添え字です。)  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ このTに関して次のようなことが言えるのですが、 どのような意味なのか理解することができません。 どなたか、以下の事をもう少し分かりやすく教えて いただけないでしょうか。 基本対称式{ei|1≦i≦n}を含むようなイデアルはすべてTを含むので、Tは基本対称式を含むような最小のイデアルである。 このようなとき、Tは基本対称式によって生成された イデアルといいT=<ei|1≦i≦n>と表す。 数学I 「対称性を崩さない式変形」とは? 数学I 「対称性を崩さない式変形」とは? いつもお世話になっております。 数学Iの対称式の分野で「対称性をできるだけ崩さずに式変形すると・・・」 という表現があり、式変形は確かに示されているのですが、そもそもこの 「対称性をできるだけ崩さずに式変形する」とはどのようにすることを意味するので しょうか。 a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b) ← 元の式 =(b+c)/a+(c+a)/b+(a+b)/c ← 対称性を壊さない式変形 単に展開してまとめているようなのですが、何か基準があるのでしょうか。 よろしくお願いします。 [数検1級1次]基本対称式の記述 対称式kx^4+y^4+z^4を基本対称式で表したいのですが、模範解答ではs(1)などのように問題文や答案に断りのない文字が加わっています。 ちなみに()内は添え字です。 問題集の要点整理のページには、 s(1)=x+y+z s(2)=xy+yz+zx s(3)=xyz と書いてありますが…。 数学I 二次関数の問題 関数y=mx^2+4x+m-3において、yの値が常に負である。 この問題の解答解説が画像の通りになるのですが、 青く囲った部分について質問です。 囲っている部分は、ただ判別式を求めただけのように思える のですが、なぜm<0ということを導き出せるのですか? (D<0のほうは理解しています) どなたか教えてくださると幸いです。 高校数学 陰関数の対称性の示し方 いつもたいへんお世話になっております。 陽関数y=f(x)の対称性の示し方は分かるのですが、陰関数f(x、y)=0の対称性の 示し方ってあるのでしょうか。 例えば、円x^2+y^2=1(例が簡単すぎてゴメンナサイ)は示すまでもありませんが、 もし式で示すのであれば、 1.f(x、y)=x^2+y^2-1=0として、f(-x、y)=f(x、y)よりy軸対称 2.x^2+y^2=1において、xを-xとすると、同じ式が得られる、よってy軸対称 上記の1や2の示し方で問題ないのでしょうか。 図形的に明らかな場合はこんなことはしませんが、見慣れない陰関数を処理するときの対応としての質問になります。 よろしくお願いします。 対称式について 対称式について、以下の式もx,yの対称式と呼んでいいのでしょうか。 x^3-y^3-x+y=0 xとyを入れ替え、移項または両辺を-1倍することで、元の式と同じになりますが、このような操作をした結果、同じ式になるのですが、それでもいいのでしょうか。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 対称,反対称?? x,y軸に対称とかって言いますよね?これは言葉どおりなんで分かるのですが,反対称ってのはどういう状態なんでしょうか? 対称式のテクニック? X+Y XY の値が与えられている。 X^2+Y^2= このとき(X+Y)^2-2XYとすれば求められますよね。 それから、X^5+X^5=(X^2+Y^2)(X^3+Y^3)-・・・ って感じにするじゃないですか。 これってX+Y、XYだけであらわせられるようなのですが・・・。この手の問題が来たら、XとYをくくって二乗とか3乗!4乗はY^2+X^2を全体二乗!って形で覚えればいいんでしょうか。 質問書いているうちに、なんとなくパターンが自分でよめてきちゃいましたが、そもそもどういうことが聞きたかったかというと、基本対称式と言われるもの←XとYとか2文字だけのやつでしたっけそれはXY X+Yだけであらわすことが可能らしいです。 X^2Y とかなんで残らず消せるのだろうか・・・と疑問におもったのです。 まぁこれもこういうもんなんだって暗記してもいい気がしますが・・・ 理解が深まったほうが暗記の定着にもつながるから質問させてもらいました、おねがいします。 基本対称式 [(x_1-x_2)(x_2-x_3)(x_3-x_1)]^2をx_1,x_2,x_3の基本対称式 s_1=x_1+x_2+x_3 s_2=x_1x_2+x_2x_3+x_3x_1 s_3=x_1x_2x_3 で表せという問題で、 18s_1s_2s_3+s_1^2s_2^2-4s_1^3s_3-27s_3^2-4s_2^3 となるらしいのですが、 導出方法が全く検討がつきません。 18とか27とか、どっから出てくるんでしょう。 数学Iの二次関数の問題です 解説を見ても分からない問題があったので分かる人がいたら教えて下さい。 問 放物線y=x^2+ax+aを原点に関して対称移動し、さらに、x軸の正の方向に1,y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 解説 放物線の原点に関する対称移動、平行移動と定数の値 放物線y=f(x)を原点に関して対称移動すると-y=f(-x) よって、y=x^2+ax+aは y=-x^2+ax-a・・・(1) に移る。 一方、(1)は放物線y=-(x-2)^2を、x軸方向に-1、y軸方向に-bだけ平行移動したもの・・・(2) と一致すると考えてよい。 (2)を整理し、(1)=(2)からa,bの値を求める。 (参考) 放物線y=f(x)を、x軸方向にα,x軸方向にβだけ平行移動するとy-β=f(x-α) 回答 a=2 b=1 (2)を整理し、(1)=(2)からa,bの値を求めるのところができないんです。分かる方がいたら教えて下さい。 対称式に詳しい方おしえてください。 Fxyz=x^3+z^3+(x+z)yとするとき (1)x、y、zの置換を行って得られるすべての相異なる整式をおしえてください。 (2)それらの和を基本対称式Si(i=0,1,...,n)の整式で表しかたをおしえてください。 対称性とは?? f(x,y) = 2x^2 + 2y^2 - x^4 - y^4という式の極大値と極小値を 求めるという問題で偏微分によって (x,y) = (0,0),(1,0),(-1,0),(0,1),(0,-1),(1,1),(-1,1),(1,-1),(-1.-1) という極値の候補が求まると思うのですが、ここから関数の対称性より、 (x,y) = (0,0),(1,0),(1,-1)に絞れるようなんですがなぜこのようになるのか よくわかりません。どなたか教えてください。 対称性とは f(x,y) = 2x^2 + 2y^2 - x^4 - y^4という式の極大値と極小値を 求めるという問題で偏微分によって (x,y) = (0,0),(1,0),(-1,0),(0,1),(0,-1),(1,1),(-1,1),(1,-1),(-1.-1) という極値の候補が求まると思うのですが、ここから関数の対称性より、 (x,y) = (0,0),(1,0),(1,-1)に絞れるようなんですがなぜこのようになるのか よくわかりません。どなたか教えてください。 数学の問題の答え方 問題 15Kmの道のりを毎時3kmの速さで歩くとき、歩き始めてからx時間後の道のりをyKmとする。 解答を 1次関数の基本の形のように15-3xから変形させ y=-3x+15としました ところが解答はy=15-3x(0≦x≦5)とそのままです。 疑問に思ったのが 15-3xでも-3x+15でもどちらでもいいのか 定義域も付け加える必要があるのかの2点です よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ご丁寧にありがとうございます!! とても助かりましたm(__)m