- ベストアンサー
電子の最高速度
こんにちは、 電子を粒子加速器等で飛ばした場合、現在の技術では、 光速度の何%くらいまで、速度を出すことができるのでしょうか?
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
高エネルギー加速器研究機構のHPをみてみたら・・ 「電子の加速熱カソードから発生し、200キロボルトで予備加速された電子は、2,856メガヘルツのマイクロ波で加速される。リニアックは全長約600メートルあり、この間で、最高80億電子ボルトまで加速する。この時の電子の速さは、光の速度の99.9999998%になる。」 という文章がありました・・ 最高かどうか不明ですが、一応そこまでは達成しているもよう。
その他の回答 (2)
oshiete-naさん: #2 grothendieckさんの回答に対する補足、 >このページは見つかりませんでした。 は、確かにそうなりますね。そのページは、 「スペクトロ・アセニアム/知の現代」サイト http://www.aa.alpha-net.ne.jp/t2366/ の中の、「サイエンス・スペクトラム」→「第3回 ヒッグス粒子のしっぽ」でしょう。 参考URLにそのページのURL、 http://www.aa.alpha-net.ne.jp/t2366/%83q%83b%83O%83X%97%B1%8Eq%82%CC%82%B5%82%C1%82%DB.htm を入れておきました。うまく見えますでしょうか? うまく見えなかったら、この本文中に記載したURLをブラウザのURLランに直接コピー&ペーストしてみてください。
お礼
こんにちは、 速度が、光速度の何%になったときに、スピン上、下向きの比率が1:1になるか?計算して結果を後日、アップします。 を、計算しましたら、光速度の99.9999%でも、約85:15で、1:1には、なりそうもありませんでした。 ということで、考えていたことは意味がありませんでした。 また、DIRAC方程式の計算については、別途質問します。 ありがとうございました。
補足
お返事ありがとうございます。 HP読めました。LHCで、ヒッグス粒子が発見されるかもしれませんね。 ところで、考えたのですが、停止状態でスピン上向きの電子を飛ばした場合、速度が上がるに従い、下向きの電子が相対論的な効果によって現れると思うのですが、ある時点で、スピン上向きとスピン下向きの比率が、1:1になったとき、スピンによる磁性は消失するのでしょうか? もし、そうなら粒子加速器内部で、電子の進行方向に垂直に強い磁場を掛けても、電子はその方向に引っ張られないはずですね。 速度が、光速度の何%になったときに、スピン上、下向きの比率が1:1になるか?計算して結果を後日、アップします。 で、、、、その計算について、ご教示頂きましたら幸いです。(前回に記載した内容で、間違いに気づき一部修正しました。) 一定方向に、ある速度で進む電子について、 (1)存在確率の計算は、下記でよいでしょうか?(DIRAC方程式で計算しました) (2)これらの解は、実験によって確かめられているのでしょうか?(例えば、停止状態でスピン上向きの電子を飛ばした場合、速度が上がるに従い、下向きの電子が相対論的な効果によって現れる。と思うのですが、如何でしょうか?) 計算結果 条件 光速度(固定)c = 1 速度 0.1~0.9*C 0.1*Cづつ変化させる 質量 m = m*γ 速度に合わせて変化 但し γ = 1/Sqrt[1 - (v/c)^2] 運動量 p = m*v 結果 存在確率の一例は、 {0, -((c*m + Sqrt[c^2*m^2 + p^2])/p), 0, 1} なので、 c=1,p=0.10050378152592121,,m=1.005037815259212,v=0.1*c の場合 存在比 {0., 0.9975185951049945, 0., 0.0024814048950054313} c=1,p=0.20412414523193154,,m=1.0206207261596576,v=0.2*c の場合 存在比 {0., 0.9902903378454601, 0., 0.00970966215453992} c=1,p=0.31448545101657543,,m=1.0482848367219182,v=0.3*c の場合 存在比 {0., 0.9789131426105757, 0., 0.0210868573894243} c=1,p=0.4364357804719847,,m=1.0910894511799618,v=0.4*c の場合 存在比 {0., 0.9642383454426298, 0., 0.03576165455737034} c=1,p=0.5773502691896258,,m=1.1547005383792517,v=0.5*c の場合 存在比 {0., 0.9472135954999579, 0., 0.05278640450004206} c=1,p=0.75,,m=1.25,v=0.6*c の場合 存在比 {0., 0.928746462856272, 0., 0.07125353714372791} c=1,p=0.9801960588196068,,m=1.4002800840280099,v=0.7*c の場合 存在比 {0., 0.9096159602595202, 0., 0.09038403974047973} c=1,p=1.3333333333333337,,m=1.666666666666667,v=0.8*c の場合 存在比 {0., 0.8904344047215151, 0., 0.10956559527848483} c=1,p=2.0647416048350564,,m=2.294157338705618,v=0.9*c の場合 存在比 {0., 0.871647073123583, 0., 0.1283529268764169}
- grothendieck
- ベストアンサー率62% (328/524)
LEPでは207Gevまでのエネルギーを出すことができます。Higgs粒子の発見が期待されていましたが、最近断念されたようです。
補足
お返事ありがとうございます。 Higgs粒子は、更に重いのでしょうか?それとも、誰かが都合のいいように想像したもので、存在しないのでしょうか? 残念ながら、HPは下記でした。 このページは見つかりませんでした。
補足
お返事ありがとうございます。 光の速度の99.9999998%まで、出せるのですか?驚きです。 でも、かなり質量が増加して、加速が困難な気がします。 で、、、、ついでに、下記についてもご教示頂きましたら幸いです。 一定方向に、ある速度で進む電子について、 (1)存在確率の計算は、下記でよいでしょうか?(DIRAC方程式で計算しました) (2)これらの解は、実験によって確かめられているのでしょうか?(例えば、停止状態 でスピン上向きの電子を飛ばした場合、速度が上がるに従い、下向きの電子が 相対論的な効果によって現れる。と思うのですが、如何でしょうか?) 計算結果 条件 光速度(固定)c = 1 質量(固定)m = 0.01 速度 0.1~0.9*C 0.1*Cづつ変化させる 運動量 p = m*v*γ 速度に合わせて変化 但し γ = 1/Sqrt[1 - (v/c)^2] 結果 存在確率の一例は、 {0, -((c*m + Sqrt[c^2*m^2 + p^2])/p), 0, 1} なので、 c=1,p=0.0010050378152592122,m=0.01,v=0.1の場合 存在確率 {0., 0.9974937185533099, 0., 0.002506281446690023} c=1,p=0.0020412414523193153,m=0.01,v=0.2の場合 存在確率 {0., 0.9898979485566357, 0., 0.010102051443364382} c=1,p=0.0031448545101657546 ,m=0.01,v=0.3の場合 存在確率 {0., 0.9769696007084728, 0., 0.023030399291527164} c=1,p=0.004364357804719848,m=0.01,v=0.4の場合 存在確率 {0., 0.9582575694955839, 0., 0.041742430504416006} c=1,p=0.005773502691896259,m=0.01,v=0.5の場合 存在確率 {0., 0.9330127018922192, 0., 0.06698729810778069} c=1,p=0.0075,m=0.01,v=0.6の場合 存在確率 {0., 0.9, 0., 0.1} c=1,p=0.009801960588196068,m=0.01,v=0.7の場合 存在確率 {0., 0.8570714214271425, 0., 0.14292857857285748} c=1,p=0.013333333333333336,m=0.01,v=0.8の場合 存在確率 {0., 0.8, 0., 0.2} c=1,p=0.020647416048350565,m=0.01,v=0.9の場合 存在確率 {0., 0.7179449471770336, 0., 0.2820550528229664}