stomachman さんの言われるように,20世紀初頭の大難問でした.
1911 年にラザフォードが原子核+電子という模型を提出して以来,
1913 年のボーアの量子仮設などを経て,1926 年にシュレーディンガーが
水素原子のシュレーディンガー方程式の解を示したのが最終解決ですね.
3人ともノーベル賞を受けています.
ラザフォード・・・・・・・・1908年,ノーベル化学賞
ボーア・・・・・・・・・・・1922年,ノーベル物理学賞
シュレーディンガー・・・・・1933年,ノーベル物理学賞
○ 前期量子論風に簡単にやってみましょう.
電子が陽子の周囲を半径 a の円軌道で回っているとして
(本当は回っているわけではないが...)
陽子-電子間のクーロン引力が e^2/a^2
(4πε0 がついていないのは cgs 非有理化単位系を使っているから)
遠心力が maω^2 (ωは回転の角速度),
両者が釣り合うから
(1) e^2/a^2 = maω^2
速度は v = aω で,運動量 p は
(2) p = mv = maω
stomachman さんの言われる電子波の波長λは,
ド・ブロイ(これも1929年のノーベル物理学賞)の関係式(1924年)で
(3) λ = h/p
h はプランク定数.
円軌道一周が 2πa の長さですから,これが波長λの整数倍でないと
一周したときに波の頭としっぽがずれてしまう.
(4) 2πa = nλ (n は自然数)
で,(1)~(4)から,簡単に
(5) a_n = n^2 h^2 / 4π^2 m e^2
で,円軌道の半径が h^2 / 4π^2 m e^2 の n^2 倍しかとれない,
というようになっているのがわかります.
n = 0 では電子波がなくなっちゃいます.
エネルギー E_n は,運動エネルギー mv^2 = ma^2 ω^2 と,
クーロン力のポテンシャルエネルギー -e^2/a (負号は引力だから)の和で,
(6) E_n = - 2π^2 e^4 m / n^2 h^2
で,これも離散的な値を取ります.
stomachman さんの E = mc^2 は何か誤解されているようですね.
エネルギーが E_n で量子化されていますから,
状態間を移るためにはそのエネルギー差の出し入れが必要なです.
それが電磁波のエネルギー hν になっているので,
吸収や放出する電磁波の波長は特定のものしかあり得ません.
ここらへんは stomachman さんの言われるとおり.
○ 上の前期量子論風の話は,きちんとした量子力学の定式化の話からすると
まずいところがあれこれあります.
○ ド・ブロイの波長の話は大分後の話で,前期量子論では作用積分の量子化
という議論になっていました.
○ もうちょっと簡単に言うなら,
電子が陽子の場所に落ち込んで動かなくなってしまうと,
場所が決まり運動量も決まってしまうので,
ハイゼンベルクの不確定性原理に違反する,という言い方も出来ます.
○ エネルギーが離散的な値を取るのは束縛状態(E < 0)だけで,
非束縛状態(散乱状態)の E > 0 では,エネルギーが連続的な値をとります.
量子力学では何でもエネルギーが離散的というわけではありません.
よく誤解されるようですが,量子力学という名前が悪いのかな?
加速器で陽子を原子核に打ち込むような話では,
陽子のエネルギーは連続的に取り得ます.
○ 加速器でよく使われるのは,
陽子や重陽子(重水素の原子核,陽子1個+中性子1個)や
α粒子(ヘリウム4の原子核,陽子2個+中性子2個)を
標的の原子核に打ち込むというものです.
標的がうまく取り込んでくれれば,原子番号が1か2大きい原子核ができます.
超ウラン元素のはじめの方はこのようなやり方で作られました.
後の方の元素はクロムイオンを鉛原子核にぶつけるなど,しています.
陽子も原子核も正電荷を持っていますから,クーロン反発力があります.
十分距離が近づけば核力の引力が作用しますが,そこまでクーロン反発力に逆らって
近づけるために加速器で加速するのです.
補足
回答、ありがとうございます。 新たな疑問が、わいてまいりました。もしよろしければ、参考になるアドバイスがほしいのです。 原子核に電子が落ち込まないことの説明に、不確定性原理を使うことができるようですが、加速器での衝突の時、素粒子同士がぶつかるのは不確定性原理に違反してはいないのですか(私の不確定性原理の理解が、あやふやの可能性があるのですが)。