ベストアンサー 準同型写像 素イデアル 2020/11/14 17:41 φ:A→Bを環の準同型写像とし、pをBの素イデアルとする。このとき、φ^-1(p);={a ∈A | φ(a) ∈p}はAの素イデアルであることをどう示しますか。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー tmppassenger ベストアンサー率76% (285/372) 2020/11/14 22:52 回答No.1 φと書くのが面倒なので f, f^{-1} と書くのが面倒なので f* と以降書く。 ◯ f*(p) がAのイデアルであること x, y ∈ f*(p) ならば、f(x), f(y) ∈ p。この時 f (x + y) = f(x) + f(y) ∈ p であるから、 x+y ∈ f* (f(x+y)) ⊂ f*(p)。又 z∈A なら、f(zx) = f(z) f(x) ∈ p であるから、同様に zx ∈ f*(p) 。従って f*(p) は Aの イデアルである。 ◯ f*(p) が A の真のイデアルであること Aの単位元を1_A, Bの単位元を 1_B と以降書く。1_A ∈ f*(p) であれば、f(1_A) = 1_B ∈p であるが、p は Bの素イデアルであるから 1_B ∉p 。対偶より 1_A ∉f*(p)。よってf*(p) は Aの真のイデアルである。 ◯ xy∈ f*(p) なら、x∈f*(p) または y∈f*(p) (の少なくとも一方)が成り立つ事 xy∈ f*(p)なら f(x) f(y) ∈p。pはBの素イデアルであるから、f(x)∈p または f(y)∈p。f(x)∈pの時は x∈f*(f(x)) ⊂f*(p)。f(y)∈pの時は y∈f*(p) となる。 以上から、f*(p) は確かにA の素イデアルである。 質問者 お礼 2020/11/14 23:04 ご丁寧にありがとうございます!!勉強になります!本当にありがとうございます⸜(*ˊᵕˋ*)⸝ 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 同型写像に関する問題 問題を解いていて A→Bが環の同型写像であるとき、その既約剰余群 (A)^* → (B)^* が群の同型写像になるってことを証明しないといけないらしいんですが、そのままいえないんですか? どうやって証明すれば良いんですか? 素イデアルの極大性 K:代数体 O:Kの整数環 P1,P2:素イデアル のとき、 P1⊂P2⊂O という包含関係が成り立っていれば、 P1=P2 となるのはなぜなのでしょうか?! 本には「素イデアルの極大性からわかる」というふうに書いてあるのですが、どうもすっきりしません(>_<) 素イデアルの極大性からわかることは ”P2=P1 または P2=O” ということではないでしょうか?? どうしてP2=P1といいきれるのかわかりません。 どなたかお力を貸していただきたく思います(><)! 極大素イデアルと極大イデアル まず、質問文が長くなったことと、定義などをいろいろ細かく指定したことをお詫びします。 また、極大素イデアルというのは maximal prime ideal を勝手に日本語にしたもので、正しい数学用語かどうかわかりません。 この質問では乗法の単位元1をもつ可換環のみを考え、素イデアルは(1)に等しくないとします。 記号の使い方で、A⊆BはAがBの部分集合、A⊂BはAがBの真部分集合を表すとします。 このとき、素イデアルPに対して、P⊂P’⊂(1)を満たす素イデアルP’が存在しないとき、Pを極大素イデアルと定義します。 ある数学書には、 Rをネター環、PをRの極大イデアル、A≠(1)をRのイデアルとするとき、 P^n ⊆A⊆Pとなる自然数 n が存在する⇔Aは準素イデアルで√A=Pが成り立つ という命題が載っていて、別の数学書には、 Rをネター環、PをRの極大素イデアル、A≠(1)をRのイデアルとするとき、 P^n ⊆Aとなる自然数 n が存在する⇔Aは準素イデアルで√A=Pが成り立つ という命題が載っています。ふたつを見比べると、これらの命題に限れば極大素イデアルと極大イデアルは互換性をもつといえます。 質問したいのは上の命題の証明ではなく、極大素イデアルと極大イデアルは同じものかどうかということです。 極大イデアルが極大素イデアルであることは明らかですが、逆は成り立つでしょうか。 成り立たないとすれば、P⊂B⊂(1)を満たす極大素イデアルPと素イデアルでないイデアルBが存在する例があるはずですが、そういう例が見つかりません。 極大素イデアルが極大イデアルであることを証明しようとも試みましたが、証明できませんでした。 有理整数環Zでは極大素イデアルは必ず極大イデアルになり、k[x, y] の極大素イデアル (x, y) も極大イデアルですが、例を挙げただけでは証明になりませんので。 どうか、アドバイスをよろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 極大イデアル Kを体,K[X,Y]をK上の2変数多項式環とし、a,b∈Kとする。 環の準同型写像φ:K[X,Y]→K をf(X,Y)∈K[X,Y]にf(a,b)∈Kを対応させる写像ととして定めたとき (Xにa,Y にbを代入する 写像) K[X, Y ] のイデアル (X - a, Y - b) は極大イデアルであることを示すにはどう示したらいいのでしょうか。 素イデアル・極大イデアル 代数の本を読んでいてつまずいてしまったのですが… 「 Q:有理数 K=Q(√-5)={a+b√-5|a,b∈Q}…代数体 Ok:Kの整数環 この時、 2と1+√-5から生成されるOkのイデアル(2,1+√-5)は素イデアルである。 なぜなら、(2,1+√-5)のOkにおける指数が2であることから(2,1+√-5)は極大イデアルとなるので明らか。」 このように本に書かれてあったのですが、わからないことが2つあるんです。 1."(2,1+√-5)のOkにおける指数が2"というのはどこからわかるのでしょうか?! 2."(2,1+√-5)のOkにおける指数が2"なら、なぜ(2,1+√-5)は極大イデアルとなるのでしょうか?! この2点がどうしてもわからなくてモヤモヤしています(>_<;どなたか考え方など、お教えいただきたく思います。 長い文章ですみません。よろしくお願いします! PIDでない環のイデアル(素イデアル)の探し方 PIDでない環のイデアルの探し方についての質問です。 数多くの代数や数論の教科書および参考書に, 以下の例が挙げられています; > 環 Z(√-5) において, > 素イデアルは (3,1+√-5),(3,1-√-5),(1+√-5,1-√-5) の3種類あり, > (3,1+√-5)×(3,1-√-5) = (3) > (3,1+√-5)×(1+√-5,1-√-5) = (1+√-5) > (3,1-√-5)×(1+√-5,1-√-5) = (1-√-5) > (1+√-5,1-√-5)^2 = (2) > なので,6 = 2×3 = (1+√-5)×(1-√-5) と2通りの素因数分解ができる とりあえず,この例については,正しく理解しているつもりです。 (自分で手を動かして,(3,1+√-5)×(3,1-√-5) = (3) などを確かめています。) 実際に手を動かすと 「なるほど,確かにイデアルになっているなぁ」とはわかるのですが, しかし,この「イデアル」の探し方(見つけ方)がわかりません。 これは明らかなことではなく, 考えていればそのうちわかるようなことでもないと思えるのですが, なにか「探し方のアルゴリズム」のようなものが存在するのでしょうか……。 ちなみに私の理解度について申しますと, 私が思いつく環はすべて整数環 Z と同じ「単項イデアル整域(PID)」ばかりで, そうでない例は,上記の「環 Z(√-5) 」くらいしか知りません。 (手元にあるどの本を見ても上記の例ばかり載っているので……) ということで, (1)単項イデアル整域(PID)でない環(と,その素イデアル)の例 (2)PIDではない環の素イデアルは,どのように探せば(考えれば)よいのか を,教えていただきたいと思います。 参考になる書籍(やWebサイト)を教えて頂くだけでも構いません。 どうぞよろしくお願いします。 素イデアルの冪と準素イデアル R を実数体として、多項式環 R[x, y] のイデアルを考えます。 (x, y)^2 = (x^2, xy, y^2) = (x^2, y) ∩ (x, y^2) 上の関係では、素イデアルの冪が準素イデアルに等しくなっていますが、一般的には同じことがいえるのでしょうか。 有理整数環 Z と、体 k 上の多項式環 k[x], k[x, y] で調べてみたのですが、素イデアルの冪が準素イデアルにならない例を見つけられませんでした。 どうか、アドバイスをよろしくお願いします。 素イデアル R:Dedekind整域とする。 (Rはイデアルについて約鎖律成立、Rは整閉,Rの任意の素イデアルはは極大イデアル) ところでPはRの素イデアルとします。 イデアルP^2、P^3の包含関係で、P^2⊇P^3は明らかですが、また直観的には、 P^2⊃P^3(真に含まれる)もあきらかなのですが、これを示すにはどうすればいいのですか。 環の準同型写像について R,R'を環とします. 写像Φ:R→R'が任意のRの元x,yに対して Φ(x+y)=Φ(x)Φ(y) Φ(xy)=Φ(x)Φ(y) を満たすとき,Φを環における準同型写像といいますが,具体的にはどのような写像が考えられるのでしょうか? 出来ればΦが全単射になるもの,すなわちRとR'が環として同型となるようなものを教えていただけると助かります. これが分からないために上手い例を考えられず困っています. 詳しい方よろしくお願いします. 環の準同型写像 Kを体,K[X,Y]をK上の2変数多項式環とし、a,b∈Kとする。環の準同型写像φ:K[X,Y]→K をf(X,Y)∈K[X,Y]にf(a,b)∈Kを対応させる写像として定めるとき、(Xにa,Y にbを代入する 写像) Ker(φ) = (X -a,Y -b) (:= {g(X,Y )(X - a) + h(X,Y )(Y - b) | g(X,Y ),h(X,Y ) ∈ K[X,Y ]}) が成り立つのは何故でしょうか。 見にくくて申し訳ないです<(_ _)> イデアル 可換体論のネーター環の章ですが、ここではRは可換環だけの仮定と思います。 (補題3.6.9) P1、----,Pnが環Rの素イデアルで、イデアルAがどのPiにも含まれていないならば,Aの元aで、どのPiにも含まれないものがある。 証明 nについての帰納法 n=1 OK n=n-1 OK仮定 nのとき Pi⊆Pn (i<n)なるiがあれば、Piを省いたn-1個に適用すればよい。 すべてのi<nに関しPiがPnに含まれないとする。 a1∈A、で∀i < nに関し、Piに含まれない元a1をとる。a1がPnに含まれなければ補題を満たすので、a1∈Pnとする。 P1---Pn-1⊆Pnとすると、Pnは素イデアルゆえ Pi⊆Pn(∃i< n)となり仮定に背くからP1---Pn-1はPnに包まれない。よってP1---Pn-1の元bでPnに包まれないものをとる。a=a1+bとおけばよい。 Q.E.D. と参考書にありましたが、aがAの元というのだけがわかりません。もしaがAの元とすればbもAの元ということになりますよね。でもbはP1---Pn-1の元bでPnに包まれないものというだけなので疑問です。 どうかよろしくお願いします。 可換環Sの素イデアル 可換環Sの素イデアル P_1⊂P_2が共に可換環Sの素イデアルのときS’=S/P_1とすると P’= P_2/P_1はS’の素イデアルというのは、成り立ちますか。否ですか。 成り立つなら証明を、成りたたないなら、例えばどのような条件を付ければ成り立つか。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 巡回群Z_nの自己同型写像の数 巡回群Z_nの自己同型写像の数を求めろという問題なのですが、 小さい数で試すと、きっとnと互いに素な数と同じだけあるように思います。(自己同型写像={a→a^p:pはnと互いに素}というようなかんじ) ですが、うまく証明が出来ません。どなたか証明と、もし間違っていたら答えを教えていただけませんでしょうか。 準同型写像 位数 φ: F^× _p → F^× _pを,a ∈ F^× _pに対して φ(a) = a^2 で定める.φ は乗法群 F^× _pの準同型写像であることと、Im(φ) ⊆ F^× _pの位数の求め方を知りたいです。宜しくお願い致します。 準同型の写像 巡回群Z/nZから巡回群Z/mZへの準同型が0(ゼロ)写像ただ一つしか存在しない条件は、nとmが互いに素、即ち(n,m)=1であることを示せ。なんですが教えてください、お願いしますm(__)m 準同型写像 m,n∈Nにおいて f:Z → Z/mZ + Z/nZ a → (a+mZ,b+nZ) とするとき、fは準同型写像であることを示せといわれましたが何を示せば良いかわかりません!あとKerfをmとnの言葉で答えよというものや、fが全射となる条件というのもさっぱりなのでヒントでもよいですから教えてもらえるとうれしいです! 群とか環、体、素イデアルについて 群とか環、体、素イデアルはかなり大学の数学で理解するようにと重視されてるのですが、これらを知ることで何がどう応用できるのですか? 正直私は群、環を深く学んだからと言って何がどう分かるのか分かりません。とくに正規部分群とかなんのためにあるかも分かりません。 微分積分を深く(私が今後専門とする分野)学ぶのなら、とくに群、環を深く やる必要はないですよね? イデアルの被覆可能性 (1) あるイデアルに真に含まれる複数の素イデアルは、もとのイデアルを覆えないことを証明しなさい。 (2) あるイデアルに真に含まれる複数のイデアルが、もとのイデアルを覆う例は存在しますか。 (1) は本の問題で、帰納法を使うことは予想できるのですが、素イデアルの性質をうまく利用できず解けない状態です。 きっと素イデアルはトラップで、素イデアルの性質を使わずに証明できると思い, (2) を考えました。 もとのイデアルを覆う例はないと予想して、いろんな環とイデアルで調べましたが、予想を覆す例はまだひとつもありません。 確かな根拠のない予想ですが、間違っていますか。 どうか, (2) の答えを教えてください。 もし, (2) で覆う例が存在するなら, (1) についてもヒントかできれば証明を教えてください、よろしくお願いします。 準同型写像 下記の問題がわかりません! 教えてください。 以下の群Gから群G'への写像f:G→G'は準同型写像か?理由とともに答えよ。準同型のときは核Ker(f)と像f(G)も求めよ G=G'=S5、f(σ)=σ^(-1) 準同型写像2 f∈Sから実数Rへの写像f→∫_0~1f(x)dxは、S_0からRへの準同型写像である。 これを証明してください。できればお願いしますm(__)m (読みにくいかもしれませんが、インテグラル0から1です。) 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ご丁寧にありがとうございます!!勉強になります!本当にありがとうございます⸜(*ˊᵕˋ*)⸝