ベストアンサー x/x+a の部分分数分解 2016/06/15 19:03 x/x+a を部分分数分解すると x/x+a=x+a-a/x+a=1- (a/x+a) となるんですが、なぜこのような解答になるのかわかりません。 考え方や途中式を細かく教えて下さい。 よろしくお願いします。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー 178-tall ベストアンサー率43% (762/1732) 2016/06/16 08:17 回答No.3 たぶん、 x/(x+a) の部分分数分解。 まず、 x/(x+a) = A + B/(x+a) … (1) とする。 両辺にて x →∞ として、 1 = A また、両辺に (x+a) を掛けて x →-a とし、 -a = B この A, B を (2) へ入れれば、 x/(x+a) =1 - a/(x+a) 参考URL: http://soudan1.biglobe.ne.jp/qa9188154.html 質問者 お礼 2016/06/19 13:24 このタイプの部分分数分解は初めてだったので助かりました。 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) staratras ベストアンサー率41% (1517/3692) 2016/06/15 21:46 回答No.2 x/(x+a)を普通の数のように計算すると分り易いかもしれません。 画像を拡大する 質問者 お礼 2016/06/19 13:25 シンプルで解きやすいかもしれませんね。 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 mshr1962 ベストアンサー率39% (7417/18945) 2016/06/15 19:13 回答No.1 数式が x/x+a でなく x/(x+a) なら x/(x+a)=x/(x+a)+a/(x+a)-a/(x+a)=(x+a)/(x+a)-a/(x+a)=1-a/(x+a) 質問者 お礼 2016/06/19 13:27 途中式ありがとうございます。 理解できそうです。 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学 部分分数分解 部分分数分解 3x+2/x(x+1)^2 を部分分数分解せよ。 という問題 解答は 3x+2/x(x+1)^2=(A/x) + (B/x+1) + 〔C/(x+1)^2〕 とおいて、xの恒等式として解くと書いてあり、注意書きのところに 右辺を (A/x) + 〔B/(x+1)^2〕 としてはダメ とあるのですが、いまいち理由がわかりません。 〔B/(x+1)^2〕について、分母が二次式だから分子をBx+Cにしたら大丈夫なんですか? また、解答の (A/x) + (B/x+1) + 〔C/(x+1)^2〕 のように、なぜそれぞれ分けて三つも書かないといけないのかがわかりません。 また、もし 3x+2/x(x+1)^2 ではなく、3x+2/x(x+1)^4 だとしたら (A/x) + (B/x+1) + 〔C/(x+1)^2〕 + 〔D/(x+1)^3〕 + 〔E/(x+1)^4〕 となるんですか? また 3x+2/x(x+1)(x+2)(x+3) のような感じだったらどうなるのか・・・ 上の問題に限らず、分母をどのように分けて恒等式を作ったらいいのかがわかりません。 部分分数分解の分母の分け方の考え方を教えてください。 部分分数分解 はじめまして。高校生です。 部分分数分解のやりかたが分からないものがあるんですが、どなたか分かる方がいらっしゃいましたら詳しい途中計算も含めて教えて頂きたいんですが、よろしくお願いします。 1/X(Xの2乗+1) これの部分分数分解です。ちなみに答えは 1/X - X/Xの2乗+1 です。 どなたか詳しく教えてください。 部分分数分解 部分分数分解について質問です。 2/(x^3+x^2) を部分分数分解する問題です。 答えを見ると (1)「-2/x + 2/x^2 + 2/(x+1)」 となっているのですが、 (2)「1/x + (-3x+2)/x^2 + 2/(x+1)」 でも元の式と同じになります。 (2)の式ではいけない理由はなんですか? ポイントは、「(-3x+2)/x^2」の分子の部分だと思うのですが、いまいち分かりません。 よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 部分分数分解 部分分数分解 添付画像の方法で部分分数分解をしようと考えています。 ∫(3x-1)/((x+1)(x^2+1))dxにおいて、 (3x-1)/((x+1)(x^2+1))=(a/(x+1))+(b/(x^2+1))として 係数を求めたいのですが・・・どのようにすれば解けるでしょうか? a=(3x-1)/(x^2+1)|(x=-1)=-2 bを求める事ができません・・・ どのようにすれば良いのでしょうか? 部分分数の和に分解 現在、部分分数分解で問題が解けなくて困っています。 問: x^3-3x+3/f(x) を部分分数の和に分解せよ まずf(x)=x*g(x)とおき 与式をx^3-3x+3/x*g(x)と変形し A/x+(bx^2+cx+d)/g(x)と分解します。 ですがこの後どうやっていけばいいのかがわかりません。 なんか部分分数の基本的なところから理解が足りてない気がします。 どなたかご指導のほどよろしくお願いします。 部分分数分解 この部分分数分解の式の導入方法がわかりません 1/x(x^2+3) から 1/3(1/x-x/x^2+3) です。 お願いします 部分分数分解について 部分分数分解について 1/(s^2(s+1))を部分分数分解すると、1/(s+1)-1/s+1/s^2になるのですが、どうすれば分解できるのかがわかりません。 A(S+1)+BS^2=1までいったのですが、そのまま展開しても上記の式にはなりません。。。 部分分数に分解することについて 有理数を部分分数に分解することは1次不定方程式に帰着し、その分解は一意的に決定しますが、部分分数分解は何かの役に立つのでしょうか?部分分数に分解することには、何か数学的な意味があるのでしょうか?部分分数分解の応用面や発展性についてご存じの方は教えてください。 (有理式を部分分数に分解することは有理式の積分に応用されますね。これと同じことが、有理数の部分分数分解にもあるかどうかということです。) 部分分数分解について x+5/x^2+x-2を部分分数分解せよ。という問題なのですが、 この問題の解法と、部分分数分解について教えていただけませんでしょうか? よろしくお願いします。 部分分数についての質問です。「X二乗×(X+1)分の一」を部分分数分解 部分分数についての質問です。「X二乗×(X+1)分の一」を部分分数分解して、「x二乗分のa」+「(X+1)分のb」としてはいけないとあったのですが、なぜこう置いてはいけないのでしょうか? 部分分数の分解がわかりません 部分分数の分解がわかりません 4(x+2)/(x+1)^2(x+3)を部分分数に分解せよ という問題がわかりません. 答えには2/(x+1)^2+1/(x+1)-1/(x+3) とありました. ここで思ったのですが,(x+1)は(x+1)^2の因数なので不必要な気がします. なぜ分母を(x+1)^2,(x+1),(x+3)にしているのですか? また,部分分数にするとき分母はどのように設定すればいいのですか? 部分分数分解に関してです。 部分分数分解に関してです。 (x^3-3x+3)/{(x-1)(x^2-x+1)^2}の部分分数分解ですが、 A/(x-1) + (Bx+C)/(x^2-x+1)^2 + (Dx+E)/(x^2-x+1) で解いたところ、何度解いても 1/(x-1) + (-x+1)/(x^2-x+1)^2 + (x-3)/(x^2-x+1)になりますが、不正解と採点上判断されます。 間違っている箇所がわからないのですが、どこかボケをかましているのでしょうか? 1/(x-1) - (x-1)/(x^2-x+1)^2 + (x-3)/(x^2-x+1)とxの前のマイナスを取った方が良いのでしょうか? 又、解答として単に1/(x-1) + (-x+1)/(x^2-x+1)^2 + (x-3)/(x^2-x+1)と書いたので、 (x^3-3x+3)/{(x-1)(x^2-x+1)^2} = 1/(x-1) + (-x+1)/(x^2-x+1)^2 + (x-3)/(x^2-x+1) とすべきだったのでしょうか?解答の一番最後にのみ×マークが付いていたので、答えの書き方がまずかった気もします。 お手数をお掛け致します。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 部分分数の分解 部分分数の分解 1/K(K+1)(K+2)=1/2{1/K(K+1)-1/(K+1)(K+2)} に分解できるらしんですが、なんでこのように分解できるんでしょうか? 部分分数が1/(K+a)(K+b)=1/b-a(1/K+a-1/K+b)となるルールからいうと、 K+2-K-1-K=1より 1/K(k+1)-(K+2) かな?と最初思ったのですが違うのですね。 なぜ上記のような解答になるのでしょうか? 部分分数分解について 積分の単元に入り、分数を部分分数分解して積分する作業が必要になってきたのですが、例えば 4/{(x+1)^2(x^2+3)}=A/(x+1)+B/(x+1)^2+(Cx+D)/(x^2+3) と表せるのはなぜですか?単純に A/(x+1)^2+B/(x^2+3)と表せるのはわかりますがなぜ上記のような表現になるのか分かりません。どなたか教えていただけないでしょうか? 数3積分部分分数分解 ∫(x^2-2x-1)/{(x^2-2x+3)(x-1)} これは、部分分数分解をするのですが 、 解答に、(ax+b)/(x^2-2x+3)+c/(x-1)と おくと、~と書いてありました。 ここで質問なのですが、 なぜ、a/(x^2-2x+3)+b/(x-1)とおくと 、~ではだめなのですか? どなたかご回答よろしくお願いいたします。 部分分数分解について こんばんは。 部分分数分解というもののついて質問です。 一般的に、分母が(x+n):nは定数 の積になっていて、分子が分母の次数より低ければ、分母の因数で部分分数に分解することができます。 このとき各項の分子は定数になっています。 例) (x+3)/(x+1)(x+2)=2/(x+1)-1/(x+2) では分母が因数分解できない場合や重解のときはどうなるのでしょうか。 例)3x/(x^2+1)(x+5)^2 など。 また、分解したあとの項の分子にxが残っている場合もありました。 これはどのような時に起こるのでしょうか。 部分分数分解とはどのような理論にそってやっていることなのかイマイチ直感的に理解できないので、詳しく教えてください。 ただ、高校生でも理解できるレベルでお願いします(><) 部分分数分解について教えてください。 部分分数分解について教えてください。 分子がS分母が(s+2)^2 ×(s+2s+10)の分数F(S)を部分分数分解したいのですが、途中で分からないところがありあります。 (s+2s+10)を因数分解するとS=-1±j3となり F(S)=1/{(s+2)^2×(s+1-j3)×(s+1+j3)}までわかります。 ここからよくわからないのですが、部分分数分解すると F(s)=A/(s+2)^2 + B/(s+2) + C/(s+1-j3) + D/(s+1+j3) ※ABCDは自分で置いたもの。 こうなるのですが、ここまでの過程を教えていたいただけないでしょうか? お願いします。 部分分数分解について 3/(x+1)^2*(s^2+1)を部分分数分解し、(As+B)/(x^2+1),C/(x+1),D/(x+1)^2と置きました。 しかし計算しても答えがうまくでません。 これによりA,B,C,Dの値を見つけることは可能なのでしょうか?? 積分 部分分数分解 積分 部分分数分解 積分 部分分数分解 ∫[0~1](3x-1)/((x+1)(x^2+1))dxを求めよ。 回答を読んでも理解できないので教えて下さい。 添付画像の2段目の2x+1/(x^2+1)=(x/(x^2+1))+(1/(x^2+1)) が理解できません・・・ 回答が間違っているのでしょうか? 昨日部分分数分解で質問させていただきましたので、そちらのURLも載せておきます。 http://okwave.jp/qa/q5809154.html 部分分数の解き方 次の分数式を部分分数に分解しなさいという問題で、どう解いていいかわからなくなってしまったので途中式混みで教えてください。 (1)x^2-4分のx (2)x^2+3x+2分のx-1 (3)x^2(x+1)分の1 (4)x^3+1分の1 若干式が見づらいと思うので、いちよう説明しておきます。 O分の△ Oが分母 △が分子です。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
このタイプの部分分数分解は初めてだったので助かりました。 ありがとうございました。