• 締切済み

数学 展開2

a^3-b^3-c^3=(a-b-c)(a^2+b^2+c^2-ab+bc-ca)+3abc ですか?

みんなの回答

  • bran111
  • ベストアンサー率49% (512/1037)
回答No.2

もともとの公式は a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) です。 b ⇒ -b , c ⇒ -c とすると a^3-b^3-c^3-3abc=(a-b-c)(a^2+b^2+c^2+ab-bc+ca) 3abcを移項して a^3-b^3-c^3=(a-b-c)(a^2+b^2+c^2+ab-bc+ca)+3abc

  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.1

間違っています。 正しくは a^3-b^3-c^3=(a-b-c)(a^2+b^2+c^2+ab-bc+ca)+3abc です。

関連するQ&A