締切済み 対数平均と相乗平均 2014/02/15 16:29 対数平均の式で 対数平均=(x-y)/ln(x/y) というものがありますが、これと 相乗平均=√(x・y) は同じですか? 式を使い分ける意味はあるのですか? みんなの回答 (2) 専門家の回答 みんなの回答 asuncion ベストアンサー率33% (2127/6290) 2014/02/15 22:46 回答No.2 似ても似つかない、ということです。 対数をとる ことと 平方根を求める こととは、そもそもやっていることが違います。 ていうか、相乗平均とセットにしてよく登場する 相加平均 という概念がありますが、 相加平均 と 相乗平均 が同じであるとお思いになりますか? それと同じ理屈です。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 asuncion ベストアンサー率33% (2127/6290) 2014/02/15 16:53 回答No.1 >は同じですか? 全然違うと思います。 >式を使い分ける意味はあるのですか? そりゃまあ、時と場合によっては どちらかを使う方が便利である、という 状況があるのでありましょう。 質問者 補足 2014/02/15 20:17 回答ありがとうございます。 全然とはどれくらいですか? 時と場合とはどのような状況ですか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 対数平均について 工学の勉強しているのですが、下記のような平均の計算方法がありました。 算術平均(相加平均):(A+B)/2 幾何平均(相乗平均):√(A+B) 対数平均:(A-B)/ln(A/B) 算術平均と幾何平均は理解できるのですが、対数平均の定義が良く分かりません。Wikipediaに載っている調和平均とも違うみたいです。どなたか、対数平均の定義をご存知の方がおりましたら、是非教えて下さい。よろしくお願いします。 相加平均、相乗平均の関係 x^2+y^2=2を満たす正の数x、yに対して 2/(x^2)+8/(y^2)の最小値と、そのときのx、yの値を求めよ。 この問題って明らかに相加平均、相乗平均の関係を使う問題ですよね? それをつかって最小値が10になったんですが回答には9となっていました 計算間違いとおもって1時間以上も計算しつづけたんですがやはり最小値が10にしかなりえません この問題で相加平均、相乗平均の関係をもちいることは不可能なのでしょうか?それとも私の計算ミスでしょうか? 相加相乗平均について 今学校で相加相乗について習っているのですが 3文字の相加相乗で x+y+z≧3(xyz)^(1/3)となるのは解るのですが x+y+zをまず x+yで相加相乗を使い、2(xy)^(1/2)とし、 さらに2(xy)^(1/2)とzでもう一回相加相乗をつかって 2( 2(xy)^(1/2)*z )^(1/2) とするのは間違いなのでしょうか? x+y+z≧3(xyz)^(1/3)では等号はx=y=z x+y+z≧2( 2(xy)^(1/2)*z )^(1/2)では等号はx=y=2zとなってしまいます。 授業では4文字の相加相乗平均a+b+c+dをa+b c+dと分け 2文字の相加相乗を三回使い証明していましたが三文字の場合では違うのでしょうか 自分でいろいろ考えたのですが、よく解りません。 どなたかわかる方宜しくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 相加相乗平均について cosQ=1/2√3(2x+1/x)で、Qが最大になる時xの値は?(x>o) 考えたのですが、 Qが最大→cosQが最小です。 cosQが最小になる時を考える ここで、相加相乗平均より cosQ=1/2√3(2x+1/x)≧1/2√3×2√(2x+1/x)=√6/3 等合成立のときは2x=1/x x=1/√2 相加相乗平均って、どういうときにつかうのですか? どんな問題の時にですか? 今回の式は二次関数でなくグラフ書いて判断無理なので、相加相乗でやるのですか? よくわからないです。 あと、√6/3って、だす必要あるのですか? あと、x=1/√2 ときに、最小値cosQ=√6/3 という意味ですよね。 今回相加相乗でやるようにヒントもらったので、このようにやりました。 どなたか、混乱している私に教えてください。 相加平均と相乗平均 3と27 の 相加平均 15 相乗平均 9 11と11 相加平均 11 相乗平均 11 までははわかったのですが 式はどうなりますかね? 相加相乗調和平均 x>0,y>0のとき、相加相乗調和平均の関係を使って,xy/(x^2+4y^2) の最大値を求める問題の解き方がわかりません。 解説していただけませんか。 相加・相乗平均の関係 相加・相乗平均の関係について質問です。 相加・相乗平均の式は、不等式の証明等でよく使いますし、なかなか自分でも使い慣れてきたとは思うのですが、考えてみると、どうして成立するのか。そもそも、どうして相加・相乗平均の式で最小値が求まるのか、疑問がわいてきました。そこで質問なのですが、相加・相乗平均の式の意味を教えてください。あともう一点、もし証明するようなことが可能であれば、証明の仕方を教えてください。大学受験レベルでは必要ないでしょうか?よろしくお願いいたします。 自然対数Ln(x)からxを求める方法について エクセル2007を使用し、あるグラフの近似曲線(対数近似)を描き、y=0.394Ln(x)+0.88という式を得ました。 y=2.041の時のxの値を求めたいのですが, 自然対数Ln(x)からxを求める方法があるでしょうか? よろしくお願いします。 相加・相乗平均の式について 相加・相乗平均の式を使って x>0のとき、x+9/xの最小値を求める方法がわかりません。 式はa+b≧2√(ab)を使うのですが、 使い方がよくわかりません。 お願いします 相加平均・相乗平均の問題 問題集にあった問題です。 x二乗+4y二乗=4 のときxyの最大値と、 そのときのxとyの値を求めよ 【解答】(相加平均)≧(相乗平均)より 4=x二乗+4y二乗≧2√x二乗×4y二乗=4|xy| となっているのですが、なぜ 4|xy| といった絶対値が出てくるのでしょうか? 私は 2≧√x二乗×4y二乗 4≧x二乗×4y二乗 までしかわかりません。 最終的に答えはどうなるのでしょうか? アドバイスお願いします。 相加・相乗平均について 相加平均・相乗平均の意味は 相加平均「2数の和の平均」 相乗平均「2数の積の平均」 で正しいですか? 相加相乗平均について 問題集をやっていて (x+y+z)/3≧(xyz)^(1/3)というのを証明しろという問題がありました。 (これは証明できました) 学校で習った相加相乗平均(x+y)/2≧(xy)^(1/2)とそっくりだったので じゃあ(x+y+z+・・・)/n≧(xyz・・・)^(1/n)も成り立つのかと思って 実際にやろうとしたんですが、n=4でつまづいてしまったので手が出ません。 興味があってネットで調べていたんですが、 いいページがなかった(説明がない or 説明が難しすぎる)ので 高2の僕でも分かるように教えてください。 よい参考となるページがあるのならそれだけでもけっこうです。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 変数の関係に相加相乗平均を使っていいのか 質問の意味が分かりかねるかもしれませんが、例えば x>0において、x+1/xの最小値を求めよ。 という問題は、相加相乗平均の関係より x+1/x≧2√x*(1/x)=2 ゆえに最小値は2 というように、文字が消えます。 しかし、次の問題 x+y+z=π, x>0, y>0, z>0のとき、sinx*siny*sinzの最大値を求めよ という問題で、 相加相乗平均の関係より sinx*siny*sinz≦{sinx+siny+sinz/3}^3 … (A) 等号成立はsinx=siny=sinzより、x=y=z=π/3 ゆえに、最大値は(√3/2)^3=3√3/8 というふうにやろうとしたのですが、 (A)の時点で変数が残っています。 このやり方は可能でしょうか? 相加平均・相乗平均を用いた式の最小値 こんにちは。 次の問題が解けないので、考え方を教えてください。 x>0のとき、x+(1/4x)の最小値を求めよ。 という問題です。答えは 1 です。 僕が考えたとき方は、まず、式に3x-3xを足して、与式を、4x+(1/4x)-3x とします。 そして、4x+(1/4x)に、相加平均・相乗平均を使っていく・・・という感じです。 その後、のこった-3xをどう処理すればいいのかわかりません。 ご回答よろしくお願いします。 相加相乗平均について教えてください 相加相乗平均というものを習ったのですが、どういうものなのか、どういう時に使うものなのかが全く分かりません。 相加相乗平均というものを使っての最小値、最大値、等号の求め方の解説をなるたけわかりやすく教えていただけないのでしょうか? それと一回解いた問題なのですが、授業でやったもので理解があまり出来ていなくて困っています。なぜこの下記の問題に相加相乗平均を使うのかが分かりません。下記の問題の解説もできればよろしくお願いします。 直角三角形に半径rの円が内接していて、三角形の3辺の長さの和と円の直径との和が2となっている。このとき以下の問いに答えよ。 1、この三角形の斜辺の長さをrで表せ。 2、rの値が問題の条件を満たしながら変化するとき、この三角形の面積の最大値を求めよ。 以上が問題となります。よろしければ、相加相乗平均を使う問題と使わない問題の見分け方を教えてください。 よろしくお願いします。 1の問題が[x+y=1-2r]、2の問題が[直角三角形のとき最大値1/8]という答えになるそうです。 対数平均 対数平均って、言葉あるいは式でどう説明すればいいでしょうか。 それに、対数という言葉どう説明すればいいでしょうか。 3次関数の極値を相加相乗平均で求めたい 実3次関数 y=a(x-α)(x-β)(x-γ) の極値を求めるのに、普通は微分をしますが、相加相乗平均で求められると聞きました。 どうすればいいのですか? また、4次関数などでも求められますか? 相加相乗平均の問題がわかりません! 2002年・関西大の問題です。 座標平面の第1象限にある定点P(a,b)を通り、x軸、y軸と、それらの正の部分で交わる直線Lを引くとき、Lとx軸、y軸で囲まれた部分の面積Sの最小値と、そのときのLの方程式を求めよ。 という問題です。 ヒントとして ・(相加平均)≧(相乗平均)の関係を利用する。 ・直線Lはy-b=m(x-a)、m<0 とおける。 が示されています。 答えは、最小値が2ab、直線Lの方程式はy=-(b/a)x+2bとなります。 どうしても答えに行きつきません(汗) 出来れば、途中式なども詳しく、教えて下さい! 相乗平均について 相乗平均の意味を説明するときは、「2数の積を根号(√)の形にしたもの」 で正しいですか? 違っていた場合、簡単に説明の仕方を教えてください。 よろしくお願いします。 相加相乗平均で 相加相乗平均で x>0のとき x+1/x+4x/(x^2+1)の最小値と最小値を与えるxの値を求めよ。 という問題が分かりません。 a=x+1/x、 b=4x/(x^2+1) とおいて相加相乗平均の公式に当てはめてみたのですがあってるでしょうか? ちなみに最小値は4です。 また、最小値を与えるxの値がどうしてもわかりません。 両辺にx(x^2+1)を掛けて計算しようとするとxの4乗の方程式になってしまって解けません。 数学の出来る方、解き方を教えてくださると嬉しいです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
回答ありがとうございます。 全然とはどれくらいですか? 時と場合とはどのような状況ですか?