締切済み オイラー(など)和公式=テイラー展開可能性? 2013/11/27 14:02 オイラーの和公式やオイラー・マクローリンの和公式が成り立つことは、テイラー展開の可能性と同値ですか。 みんなの回答 (1) 専門家の回答 みんなの回答 ateri ベストアンサー率0% (0/0) 2013/12/07 11:13 回答No.1 オイラーの和公式というのを知らなかったので調べてみたのですが、 この証明にはC^∞級であることだけ仮定しても十分なように見えます(Wikipediaを見る限り)。 しかし「テイラー展開可能」であることは「何回でも微分可能(C^∞級)」より真に強い条件(C^ω級)です。 C^ωがC^∞より真に強いことは、 f(x)=e^(-1/x) (x>0), f(x)=0 (x≦0) という関数を考えると良いです。 このfは原点で滑らかにつながっていますが、原点で各階の微分係数が0となってテイラー展開できません。 質問者 お礼 2013/12/07 22:14 誠に有難う御座いました。 質問者 補足 2013/12/09 20:23 しかし、原点で各階の微分係数が0となっても、テイラー展開の定義の式から、f(x)=0+0+0+・・・=0 というテイラー展開ができることになるのでは? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A オイラーの公式 オイラーの公式の証明をしたいのですが、マクローリン展開を用いた証明方法がわかりません。 もし、証明がわかる方いましたら教えて下さい。 また、わかりやすいサイトなどでも構わないです。 すみませんが宜しくお願いします。 オイラーの公式の導き方 オイラーの公式 e^(iθ)=cosθ+isinθ を導く方法で、マクローリン展開を使う方法は知っているんですけど、他にどのような方法があるでしょうか? テイラー展開とマクローリン展開の語源に関する質問 テイラー展開はマクローリン展開の拡張であり、 マクローリン展開はテイラー展開のある制約のもとで成り立つ式です。 テイラー展開とマクローリン展開はどちらが先に生まれたのでしょうか? なぜほとんど同じものである公式に全く別の人の名前がついているのでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム どうやってオイラーの公式を用いて解きますか? まず加法定理で展開して次はオイラーの公式を用いて解くのがヒントですがやってみたらできなくて解き方を教えてもらえませんか? オイラーの公式による加法定理の証明は循環論法? 三角関数の加法定理は、大抵 ・単位円上の2点で余弦定理 ・オイラーの公式 を使って証明されると思います また、オイラーの公式による証明は通常テイラー展開が用いられると思います、そしてテイラー展開をするにはsinとcosのn次導関数を求める必要があります ここで、問題なのですが (sinx)'=cosx の導出は lim[h→0] {sin(x+h)-sinx}/x =lim[h→0] 2cos(x+2h)sin(h/2)/h 和→積の公式…* =cosx として通常行うと思います しかし、*の公式(の導出)では三角関数の加法定理を用いています これは循環論法に当たるのではないでしょうか? 皆さんはどう思いますでしょうか? また、もし循環論法ならどこを改善すればいいでしょうか? オイラーの公式 eix=-1(?) というようなものを高校の段階で覚える必要はあるのでしょうか。もちろんすべての大学入試問題ではこれを使わなくてもまったくもって大丈夫だと思います。 しかし、積分や微分、和積・積和の公式など多くの高校の範囲で出てくる公式を暗記する必要がなくなるみたいなので。 また、オイラーの公式を数学が苦手な高校生にも分かるように説明してください。 よろしくお願いします。 冪級数展開 マクローリン展開 テーラー展開 冪級数展開とはテーラー展開とマクローリン展開の総称だと思っていました。 知人によれば、冪級数展開はマクローリン展開と同じ意味でテーラー展開とは 違うと言っていました。 私は、マクローリン展開はテーラー展開のx=0つまり、原点中心の級数展開だから どちらも同じように思っています。 冪級数展開とはマクローリン展開のことを指すのでしょうか? テーラー展開のことは冪級数展開とは言わないのでしょうか? 以上、ご回答よろしくお願い致します。 オイラーのπの無限和展開 物の本によると、 オイラーは、πの2乗の6分の1が、 1+1/4+1/9+1/16+・・・となることをかなり無謀な分析で見つけたと有りますが、全くランダムに出現するπの数の並びから、このような規則正しい数列の和になることなど、いくら無謀に分析しても見つけることは難しいと思われるのですが、このオイラーの無謀な分析をもう少し詳しく知りたいと思い、質問しました。どんな分析からこのような無限和を見いだしたのでしょう。 テーラー展開(マクローリン展開)について テーラー展開についての質問です。 問題=============================================== 1/cos x のx=0を中心とするテーラー展開を4次の項まで求めよ。 =============================================== この問題の解答例として、以下のような解説があったのですが、 わからない点が有ります。 <解答例> cos x のマクローリン展開は、 cos x = 1 - x^2/2! + x^4/4! + … ( |x| < + ∞)であるから、 1/cos x = 1/( 1 - x^2/2! + x^4/4! + …) ここで、 1/(1 - x) のマクローリン展開が Σ{n=0→+∞} x^n で与えられるので、 これを利用して、 1/cos x = 1 + (x^2/2! - x^4/4! +…) + (x^2/2! - x^4/4! + … )^2 + … ー(1) = 1 + x^2/2 + 5x^4/25 +… ー(2) となる。 ここで疑問なのは、 1/(1 - x) のマクローリン展開は、|x|<1 の条件が成り立つ時に限り収束するので、 適用できるわけじゃないですか? (1)から(2)のような形にする場合に、 |(x^2/2! - x^4/4! +…)| < 1 となっていないのに、このような展開をしてもいいのでしょうか? 具体的には、cos x は xの値によって -1 <= cos x <= 1 まで取り得るので、 cos x のマクローリン展開の初項が1ということは、 それ以下の項の和がxの値次第で -2程度になることも考えられると思うので このような展開をしてはいけないと思うのです。 当方 テーラー展開についてよく熟知していないため、 ご指導お願いします。 テイラー展開とマクローリン展開の関係 テイラー展開とマクローリン展開の関係を簡単に教えてください。 オイラーの公式の用い方 オイラーの公式とド・モアブルの定理を利用して3倍角の公式を証明せよ。という問題のなのですが、私にはオイラーの公式の出番がないように思えます。。。 ド・モアブルの定理 (cosθ+i×sinθ)^n=cosnθ+i×sinnθ でn=3にして実部と虚部を比較するのではだめなのでしょうか?? 一応。。。 オイラーの公式 e^iθ=cosθ+i×sinθ オイラーの公式を用いた無限級数の和について 以下の問題について、オイラーの公式を用いて解く方法をご教示下さい。 宜しくお願い申し上げます。 1)nを2以上の整数とする時、次の等式を証明しなさい。 ∑[k=1→n-1]cos(kπ/n)=0 2)次の無限級数の和を求めなさい。 ∑[n=1→∞]1/3^n・sin(2nπ/3) 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム マクローリン展開がわかりません (1+x)^1/3 をマクローリン展開(x=0でテイラー展開)せよ。 よろしくお願いします! オイラーの公式の証明方法 オイラーの公式e^ix=cosx+isinxは次のようにマクローリン展開を使って証明されているようです。 cosx=1-x^2/2!-x^4/4!+・・・+{(-1)^n/(2n!)}x^2n sinx=x-x^3/3!+x^5/5!・・・+{(-1)^n/(2n+1)!}x^(2n+1) e^ix=1+ix/1!+(ix)^2/2!+・・・=1+ix/1!-x^2/2!-ix^3/3! =cosx+isinx しかしながら厳密にn→∞において同じかどうか証明するためダランベールの収束判定というものを使わなければならないそうです。証明方法をご存知の方がいらっしゃったらご教示いただきたくお願いいたします。 テーラー展開とマクローリン展開 独学なのでいまいちはっきりわからなく。。。 f(x)のテーラー展開 Σ(n=0~∞) (☆/n!)(x-a)^n (☆はf(x)をn回微分したものにaを代入した値) 1)マクローリン展開はテーラー展開の一種である。(テーラー展開のaに0を代入したものをマクローリン展開という) 2)aに代入する値は別に何の数字であっても展開はできる 3)テーラー展開は基本的に無限回微分可能な関数をf(x)=多項式の形に直すのに使われる という理解でいいのですか? 間違ってたら訂正お願いします。 またこれはいつ使うのでしょうか。。? テイラー展開とローラン展開 テイラー展開とローラン展開の問題の解き方がよく分かりません。どちらにもマクローリン展開を用いるようなのですが・・・。例えば、z=-iを中心に関数f(z)=1/zをテイラー展開及びローラン展開するにはどうすれば良いのでしょうか?式をできるだけ詳しく説明して頂けると助かります。 オイラーの公式について 座屈のオイラーの公式が適用する値は材料によって決まっているのですか??特に鋼とアルミニウムについて指定された値があれば教えてください。教科書に載っていなかったので・・・(ちなみにジョンソンの公式は載っていました。) オイラーの公式を教えてください グラフで二次元でのオイラーの公式は グラフ G(V,E) のとき、|V| - |E| + R = K + 1 ですが、三次元の場合の公式はどうなるのでしょうか? 証明もあわせて教えてください。お願いします。 オイラーの公式 ある素人向けの数学の本に e^iπ+1=0 という式が紹介されており、筆者がこの式は数学の美と調和と不思議を示すものとして自分の墓誌に刻んだと書いてありました。 もともとは e^ix=cosx+isinx というオイラーの公式のxをπとおいてこの式が導かれるようですが、そもそもオイラーの公式というのはどのような背景で導き出されたもので、数学的にはどのような意味があるのでしょうか。 自然対数と虚数と三角関数が関連しているということが不思議なのですが、数学の歴史の中では、この式が導き出されたのはなんらかの必然性があったのでしょうか。 マクローリン展開について マクローリン展開について マクローリン展開の公式は覚えているのですが、実際にマクローリン展開しx^4の項まで求めよ、という問題が出ると解けません。 f(x)=sinxをx^4までマクローリン展開すると、答えがx-(x^3/3!)+・・・・となっていました。 x^4までとはどのように計算して行ったら上のような回答が出るのでしょう? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
誠に有難う御座いました。
補足
しかし、原点で各階の微分係数が0となっても、テイラー展開の定義の式から、f(x)=0+0+0+・・・=0 というテイラー展開ができることになるのでは?