- 締切済み
絶対値付き三角関数の積分、ラプラス変換の問題
積分∫| cos(t) |e^-st dt を求めよ.という問題で 自分なりに計算してみたところ、 ∫| cos(t) |e^-st dt (範囲は0~π) = ∫cos(t)e^-st dt - ∫cos(t)e^-st dt (範囲は0~π/2、π/2~π) = [e^-st × (-scos(t) + sin(t) ) / s^2 + 1 ] - [e^-st × (-scos(t) + sin(t) ) / s^2 + 1] (範囲は0~π/2、π/2~π) = (2e^-πs/2 / s^2 + 1 ) - ( s / s^2 + 1 ) - (se^-πs / s^2 + 1) となりました。 その次の問題で、 |cos(t)| = |cos(t+π)|を用いて、ラプラス変換 L[ |cos(t)| ] = ∫|cos(t)|e^-st dt (範囲は0~∞)を計算せよ という問題があり、こちらの方は手も足も出ない状態です。。。 まず、前半の計算の仕方が合っているのかとその次の問題の解法をお伺いしたいです。 大変見にくいとは思いますが、どうかよろしくお願いします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- muturajcp
- ベストアンサー率77% (511/658)
回答No.1