ベストアンサー 連続関数について 2013/05/26 13:56 y=f(x)なる実数全体で定義された実数値関数を考えます。このとき、 xが有理数の時、f(x)は無理数であり、 xが無理数の時、f(x)は有理数となるような連続関数y=f(x)は存在するのでしょうか。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー tetrahedron256 ベストアンサー率100% (6/6) 2013/05/26 20:23 回答No.1 存在しません。 そのような f が存在したと仮定すると、f は明らかに定値写像ではないからある x,y (x<y) が存在して f(x)≠f(y) を満たす。 f(x)<f(y) として一般性を失わない。中間値の定理から f([x,y])⊃[f(x),f(y)] である。 ここで [x,y] に属する有理数全体の集合は可算であることと f の性質から、 f([x,y]) に属する無理数全体の集合は高々可算。 一方 [f(x),f(y)] に属する無理数全体の集合は非可算。 これは矛盾である。 質問者 お礼 2013/05/26 20:54 ものすごくわかりやすい回答、ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 連続関数 関数の連続性を証明するところがわからないので質問します。 xが無理数ならば、f(x)=0とし、xが有理数で既約分数p/q(ただしq>0)のかたちに書けるときは、f(x)=1/qとする。 このように定義された関数fは無理数xで連続、有理数xで非連続である。その証明はやさしい。 xが無理数とし、εを任意の正数とする。1/q≧εすなわちq≦1/εとなる正整数qは有限個しかないから、δ>0を十分に小さく選ぶと開区間(x-δ,x+δ)には、上の条件を満たすqにたいする既約分数p/qは存在しない。したがって任意のy∈(x-δ,x+δ)に対して |f(y)-f(x)|=1/q<εとなる。fはxで連続である。一方、有理点のどんな近傍にも無理点が存在し、そこでfの値は0だから有理点では連続ではない。 自分は具体的な数としてx=√2、ε=0.4とすると、q≦2.5となり、q=1,2。 p/q=1/1,2/1,1/2,3/2などいろいろあげられますが、δ=0.01とすると(√2-0.01,√2+0.01)=(1.404・・・,1.424・・・)にはp/qはふくまれません。 ここからがわからないところなのですが、x±δは無理数に有理数を足したり引いたりした無理数であることがあるので、yが無理数になり、f(y)=0となり|f(y)-f(x)|=1/q<εが成立しないような場合があると思います。自分は本があっているなら、f(x)=0より、 f(y)=1/qになると予想しました。どなたか任意のy∈(x-δ,x+δ)に対して|f(y)-f(x)|=1/q<εとなる。を説明してください。お願いします。 関数の連続について 関数の連続について f(x)を、x=0のとき1、x∈Qでx=q/p(既約分数、p>0)のとき1/p、x∈Qでないとき0と定義する。 「f(x)は無理数で連続であることを示せ」という問題なのですが、 任意のε>0についてあるδ>0があり、無理数aについて|x-a|<δのとき|f(x)|<ε となればlim(x→a)f(x)=0と言え連続なのかと思いましたが、δをどんなに 小さくしても|x-a|<δの範囲には有理数xがあるので|f(x)|<εにならないように 思います。どこがおかしいのかご指摘願います。 値を確率的に返す関数(写像)の例 2つの値を確率的に返す関数(写像)の例を教えて下さい。 例えば、f(x)において、xの定義域が、実数全体とすると、 xが、有理数なら、関数の値が1 無理数なら 0 という関数? は、確率50%くらい で、1と0を返しますが、 これを、f(x、y)として、 x、yの関係に応じて、確率が変わる: 例えば、y=x cos2θ とすると、 1になる確率が、cos2θ になり、0になる確率が、sin2θ になる ようにしたいのです。 例えばでいいので、関数(写像)の式を、お教え下さい。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 解析学の連続関数?の問題でこまっています 教えていただきたいのは、以下の問題です。 f[a,b]→Rが [a,b] 上連続で、f の取る値がすべて有理数ならば f は定数関数になることを示せ ヒント:中間値の定理 f[a,b]→Rが[a,b]上で連続とすると、fはf(a) とf(b)の中間の値をすべて取る 有理数の稠密性 任意の実数 x と任意のε>0に対しある有理数 q で|x-q|<εを満たすものが存在する よろしくおねがいします。 関数の連続性について 現在、高校2年の者です。 数学の問題で教えていただきたいことがあります。 (1)y=f(x)=xsinx (2)y=f(x)=x+√(x^2-1) (3)y=f(x)=cos(1/x) 上記(1)~(3)の定義域とその定義域で連続かどうかを調べるのですが、定義域で連続かどうかを調べる方法がよく分かりません。 一応、以下のように考えております。 定義域については、 (1)すべての実数 (2)根号条件より、x^2-1≧0⇔x≦-1,1≦x (3)(分母)≠0より、0以外のすべての実数 連続性については、(1)~(3)のすべてにおいて、 定義域の任意に実数aについて、lim(x→a+0)f(x)=lim(x→a-0)f(x)=f(a)を示す? あと、(2)の定義域の端点(x=-1とx=1)と(3)の定義域のx>0とx<0の0の付近の示し方が? アドバイスいただけないでしょうか。よろしくお願いします。 ある区間での関数の連続性を示すためには? 閉区間[0,1]上で定義された実数値関数fは、次の二つを満たす (1)任意の実数a,b、ただし0≦a≦b≦1に対し、集合{f(y)|a≦y≦b}は、区間{f(a),f(b)}または{f(b),f(a)}を含む。 (2)任意の実数cに対し、区間[0,1]に含まれるf(x)=cとなるような実数x全体の集合は閉集合(空集合もありうる)となる このとき、fが区間[0,1]で連続であることを示したいのですが まず、連続性を証明する方法をよく知りません。 ε-δ論法が連続性を示す方法の一つだということを聞きましたが、大学一回生のときの授業で習っていないのであまりよくわかっていません。これは、ε-δ論法を使って証明するのでしょうか? 他には、教科書を見直したところ、中間値の定理の逆(当然成り立ちませんが)に似ているので、そのあたりを使うのかとも思ったのですが。。。 ヒントになりそうなホームページや、アドバイスを頂けたら幸いです 数学得意な方に質問です f(x)をRを定義域とする関数で、任意の有理数x.yに対し f(x+y)=f(x)+f(y)を満たすもので以下のことを示せ (1)任意の有理数xに対し f(x)=f(1)x (2) fをさらに連続な関数とすると、 全ての 実数xに対しf(x)=f(1)x これの解き方を押してください 関数の問題 全ての実数で連続な関数f(x)が、xが有理数のときにf(x)=x^n(nは自然数)を満たすとき、 全ての実数でf(x)=x^nであることを以下のように証明したのですが、合ってますか? 間違っているか、もっと良い方法があれば教えて頂けると有り難いです。 証明) xを実数とするとき、任意のε>0に対して、|x-y|<ε⇔x-ε<y<x+ε…(1) を満たす有理数yが存在する。 x>0のとき、εを十分小さくとればx-ε>0とできて、(1)式の辺々をn乗すると、 (x-ε)^n<y^n=f(y)<(x+ε)^n ∴f(x)-(x+ε)^n<f(x)-f(y)<f(x)-(x-ε)^n f(x)は連続だから、ε→0のときf(x)-f(y)→0。すなわちf(x)=x^n x<0のとき、εを十分小さくとればx+ε<0とできて、(1)式の辺々をn乗すると、 (x+ε)^n<y^n=f(y)<(x-ε)^n (nが偶数のとき) (x-ε)^n<y^n=f(y)<(x+ε)^n (nが奇数のとき) いずれの場合もf(x)の連続性から、x>0のときと同様にf(x)=x^nとなる。 以上から任意の実数に対してf(x)=x^n。 実数の連続性(超実数が存在しないこと)をデデキント 実数の連続性(超実数が存在しないこと)をデデキントの切断をつかって背理法で証明してください。 有理数から無理数を定義するのとおんなじようなかんじでできませんか?(;_;) お願いします(;_;) 関数の証明なんですが この証明が全くわかりません。わかる方がいればぜひ教えていただければと思います。 問 関数 f : [0,1]→R(実数) は連続であり、有理数x∈[0,1] に対しては f(x)=0 とする。 このときあらゆるx∈[0,1]に対してf(x)=0 であることを証明せよ。 宜しくお願いします。 関数の連続 (1) f(x,y) = (xy^2)/(x^2+y^4) (x,y) /= (0,0) f(x,y) = 0 (x,y) = (0,0) (2) f(x,y) = (xy(y^2-x^2))/(x^2+y^2) (x,y) /= (0,0) f(x,y) = 0 (x,y) = (0,0) (1),(2)の関数が原点(0,0)で連続かどうか調べるにはどうしたらいいのですか? 連続の定義は lim(x→a) f(x) = f(a) ですがよくわかりません。 どなたか具体的な解き方を教えてください。 連続関数 連続関数について質問です。関数f(X) において、定義域に属するXの値Aに対して極限値が存在するならばX=Aで連続であると教科書にかいてあったのですが、X=Aで連続ならばグラフはすべて連続な関数になるのですか?連続関数とは極限値が存在する事によって連続関数と言えるのですか?連続関数とは大まかに言えば何ですか?教えてくださいお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学 関数とは 数学における関数の定義は、 ある値xに対して、ただ一つのyが対応するような関係があるとき、 この関係を関数といい、一般的に y=f(x)で表す。 また、yはxの関数であるという。 ある集合Aからある集合Bへの写像fで、特に集合Aが実数や複素数などの 数の集合であるとき、fを関数と言う事が多い。 と認識しています。 y=x^2はyはxの関数であると言えます。 質問(1) y^2=xはy=±√xとなります。 この場合もyはxの関数と言えるのでしょうか? yがただ一つに定まらないため関数とは言えないと考えます。 ただ、xはyの関数とは言えると考えます。 webで調べるとy^2=xは無理関数と言うようです。 質問(2) yはxの関数,xはyの関数とはどのように違うのでしょうか? 質問(3) 関数と言う言葉自体は、yとxの関係を指す言葉だと認識して いるのですが、有理関数や無理関数と言う言葉は式自体を指す 言葉なのでしょうか? 質問(4) 例えば、y=f(x)において、f(x)が無理式である場合は、 yはxの無理関数と言ったりするのでしょうか? 以上、ご回答よろしくお願い致します。 関数の連続調査 f(x,y)=1/(x^2+y^2) ((x,y)≠(0,0)のとき) 0 ((x,y)=(0,0)のとき) で定義される関数f(x,y)が次の点で連続であるかどうかを調べよ 点(1,2) 解説をよろしくお願いします 関数 について その2 前回、関数について質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q7693762.html 前回の質問内容で、関数の定義に関して教えて頂きました。 今回は、前回の質問内容を整理させて頂いている途中で 気になった点について質問させて頂きます。 質問(1) y=ax^2+bは、「yはxの関数」と言います。 z=x+iyは、「zはx,yの関数」という表現は正しいですか? 有理式についても同様に、 ax+by+zにおいて、a,bを実数、x,y,zを変数とすると ax+by+zは、「実数を係数とするx,y,zの有理式」という表現は正しいですか? 質問(2) 前回頂いた回答の中に、 log(exp( 1 + 1/x )) は有理関数だと教えて頂きました。 有理関数の定義は有理式で表された関数だと認識しています。 有理式の定義は、 (多項式)/(多項式) と表せる式で、 多項式は (定数)×(変数)^(非負整数定数) の0個以上の和 と定義されています。 なぜ、log(exp( 1 + 1/x )) は有理関数になるのでしょうか? 質問(3) 多価関数について質問させて頂きます。 y=±√xは2価関数と呼ばれますが、 この他に3価関数や4価関数などがあるのでしょうか? 以上、ご回答よろしくお願い致します。 関数の連続性について 「関数f(x)の定義域に属するxの値aに対して関数f(x)がx=aで連続⇔(1)lim[x→a]f(x)が存在(2)lim[x→a]f(x)=f(a) (1)(2)のどちらかが成り立たないとき、x=aで不連続である」 と教科書にあるんですが、(2)のみ言えれば極限値が存在し、かつその値はf(a)であると言えるのではないのでしょうか 教科書がわざわざ強調しているのでたいへん気になりました。 よろしくお願いします 関数の連続ε-δ論法 こんにちは。関数の連続性についての質問です。 定義を 「関数fが、実数のドメインD とレンジRを持ち ∀ε>0 ,∃δ>0 st|f(x)-f(p)|<ε whenever|x-p|<δ を満たすとき点p∈Dにおいてε-δの性質をもつ」 とする時、 定理1.fがε-δの性質をもつとき、fは点pに置いて連続である この定理の証明をしたいのですが、この定義はそのまま極限の定義 lim(x→p)f(x)=f(p); ∀ε>0, ∃δ>0,∀x∈S: 0<|x-p|<δ⇒|f(x)-f(p)|<ε の様な気がするのですが、この定理は証明可能なのでしょうか? よろしくお願いします。 写像の連続性についての問題です。 写像の連続性についての問題です。 次の写像が連続かどうか判断し理由も述べよ f:Q→R, f(x)=0(if x<2^1/2) 1(if x≧2^1/2) Q:有理数 R:実数 有理数から実数への写像です。問題なのはfの値が0から1になる境目が 2^1/2であるという事です。 わかるかたいましたらよろしくお願いいたします。<(_ _)> 関数の連続性と微分可能性 以前お世話になりました、大学受験生です。 数学本の中に「明らか」としか述べられていない話があって、 もやもやしているので質問させていただきます。 その文章は以下のもので、 実数全体で連続な関数f(x)が原点を除いたところで何回でも微分可能 で(c^∞級と言うらしいです)、lim[x→0]f'(x)がある実数aに 収束しているならばf(x)は原点でも微分可能であって、 またf'(x)は実数全体で連続(つまりf'(0)=a)となっている。 です。 どう証明したらよいのでしょうか。恥ずかしながら見当がつかないのです。 それから勝手に自分で進めていることなのですが、 たとえば関数e^(-1/x^2)というのがあったとして、 原点以外でc^∞級であることを既知としていれば、原点でも 微分可能であるということになるのですか。 わかる方、長くなってもよいので詳しいご教授願います。 よろしくお願いいたします。 一様連続 R(実数の集合)上で定義された連続関数fがlim[x→∞]f(x)=0を満たすとする。 このとき、fは[0,∞)上で一様連続であることを証明せよ。 という問題が解りません。解る方は教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ものすごくわかりやすい回答、ありがとうございました。