締切済み 中学の数学の問題です! 2013/01/21 20:28 兄弟に聞かれたのですが、もう忘れてしまっていて解けなかったので、お恥ずかしながら質問させて頂きます。 大至急お願いします! 画像のような、 ∠BAC=90°の直角三角形ABCがある。 点Aから辺BCに垂直な直線をひき、 辺BCとの交点をDとする。 また、∠ABCの二等分線をひき、 線分ADとの交点をE、辺ACとの交点をFとする。 (問題) AE=4cm、ED=3cm、BE=10cmのとき、AF、EFは何センチか。 また、△AEFの面積は、△DBEの面積の何倍か。 画像を拡大する みんなの回答 (1) 専門家の回答 みんなの回答 おみみ こみみ(@dreamhope-ok) ベストアンサー率26% (147/561) 2013/01/21 20:56 回答No.1 △DBEは直角三角形であるから、三平方の定理より (BD)^2=10×10-3×3=91 BD=√91 △ABF∽△DBE(∠ABCの二等分線より∠ABF∠DBE、∠BAC=90°∠BDE=90°) あとは対応する辺の比で求められます。 質問者 お礼 2013/01/21 23:01 これでやってみます! ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 中学数学の図形の問題です 教えてください 図のようにAB=6 AC=3 ∠ACB=90°の直角三角形ABCがあり、∠BACの二等分線と辺BCとの交点をDとする。また∠BCG=90°の直角三角形BCGがある。円Oは辺BC、CG、BGとそれぞれ点D、E、Fで接している。 (1)円の半径はいくつか (2)FGの長さはいくつか (3)△BFCの面積はいくつか よろしくお願いします 中学の数学 AB=5cm BC=3cm ∠C=90°の直角三角形ABCにおいて∠Bの二等分線と辺ACとの交点をDとする。2点C、Dから辺ABにそれぞれ垂線CE、DFを引く。 CEの長さとEFの長さを教えて下さい。 ※ AB:AC:BC=5;4;3になってるところまで分かりました。 たぶん三平方の定理をつかうと思うのですが、ここからよく分からなくなってしまいました。 教えて下さい!! 中学数学の問題 図の△ABCにおいて、辺AB、AC上の点D、EはAD:DB=1:3、AE:EC=2:3となる点である。 辺BC上にAC//DG、AB//EFとなるように、点F、Gをとり、線分DG、EFの交点をHとする。 このとき、△HFGの面積は△ABCの面積の何倍か。 という問題の解き方が分かりません。 教えていただきたいです! 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 中学数学 平行四辺形の問題です 図が見にくいので、文字で入力をさせていただきます。 図で、四角形ABCDは平行四辺形、Eは、角ABCの二等分線と辺ADとの交点である。また、Fは辺CBの延長線上の点、Gは辺CD上の点で、△AFBと△EBGの面積は等しい。 AB=8cm、FB=5cm、BC=10cmのとき、次の(1)と(2)に答えなさい。 (1)線分EDの長さは何センチか答えなさい。 (2)△EGDの面積は、平行四辺形ABCDの面積の何倍か、求めなさい。 以上です。 急ぎなのですが、大変恐縮ですが、お分かりになる方がいらっしゃいましたら よろしくお願いいたします。 中学数学(幾何)の問題です。至急お願いしたいです。 中学数学です。至急解答をお願いしたいです。 何度も考えていますが、解けません。宜しくお願いします。 3辺の長さが3cm、4cm、5cmの直角三角形ABCを、BCの中点Oを中心として、 時計と同じ向きに90°回転しました。回転後の三角形をA、B、Cに対して、それぞれD、E、Fとする。 EFとABの交点をP,DEとABの交点をQ、DEとBCの交点をRとする。 このとき、次の問題に答えなさい。 (1)三角形EPQの面積を求めなさい。 (2)四角形OPQRの面積を求めなさい。 中学数学の問題です。 わからなくて困っています。 どなたかお願いします。 「AB=AC、∠A=90°の直角二等辺三角形がある。 線分DEを折り目としてこの三角形を折り、頂点Cを辺AB上の点C´に重ねたところ、辺C´Eと辺BCは平行となった。また、線分BEとC´Dの交点をFとする。 次の問いのそれぞれを証明せよ。 (1)BEは∠ABCの2等分線である。 (2)△EFDと△C´EDは相似である。」 中3 数学 図形 AB=3cm、AC=2cmの△ABCがある。∠Aの外角の二等分線とBCの延長との交点をDとしAC∦EDとなるような点EをABの延長上にとる。CD=4cmであるとき、 (1)∠BACの二等分線とBCとの交点をFとするとき、BFの長さを求めなさい。 (2)△ABFと△ADEの面積比をもっとも簡単な整数の比であらわしなさい。 以上二問です。よろしくお願いします。 ベクトルの問題2 三角形ABCにおいて、AB:AC=5:2とする。 辺ABを2:3に内分する点をDとし、∠BACの二等分線と辺との交点をEとする。 また、線分CDと線分AEとの交点をFとする。 (1)AEベクトルおよびAFベクトルをそれぞれABベクトルとACベクトルを用いて表せ。また、AFベクトルはAEベクトルの何倍と表されるか。 (2)AB=10、AC=4、∠BAC=Π/3であるとき、三角形ABCと三角形ABEおよび四角形BEFDの面積について △ABC=○ △ABE=○ (四角形BEFDの面積)=○ である。 (2)は○を求める問題です。 (1)のAEベクトルは∠BACの二等分線と辺BCの交点がEなので(ABベクトル+ACベクトル)/2だとわかったのですが、AFが出せません。 ベクトルの基本的な問題なのですが、解き方を忘れてしまい、ノートや教科書の類題を見ても完璧に理解することができずに困っています(--;) 解説よろしくお願いいたします。 数Iの問題 △ABCにおいて AB=3 , AC=8 , ∠BAC=60°である。 ∠BACの二等分線と辺BCとの交点をD, ∠ABCの外角の二等分線と直線ADとの交点をEとすると BD:DC=AB:(オ) AE:ED=AB:(カ) である。 答えは オ→AC カ→BD どうしてそうなるのかわからないので 解説をお願いします。 【中学数学】図形 ★2枚の三角形の紙ABCとDEFがあり、△ABC≡△DEF、AB=12、BC=18、AC=15である。この2枚を図(添付)のように頂点Aと頂点Dを重ねると、辺BCと辺DE、辺ACと辺EFがそれぞれ交わった。 また、辺BCと辺DEの交点をH、辺BCと辺EFの交点をIとする。 ☆B子さんは、BCとDFが平行のとき、線分BHと線分EHの長さの比が求められることに気付いた。線分BHと線分EHの長さの比を、もっとも簡単な整数の比で表しなさい。(△ABH∽△IEHは証明済) A) 4 : 1 わかりやすい解説をお願いしますvv 数学質問です。 二等辺三角形でない△ABCの辺BCの中点Mを通りBCに垂直と、△ ABCの外接円との交点をP、Qとする。P、QからABに垂線PR、 QSをそれぞれ引くと、△RMSは直角三角形であることを示せ。 解説 PQは弦BCの垂直二等分線であるから、△ABCの外接円の直径で ・・・・ 弦BCの垂直二等分線だとなぜ△ABCの直径といえるのかわかりません。教えて下さい。 分からない問題 △ABCにおいて,AB=8,AC=4,A=120度とする。∠Aの二等分線と辺BCとの交点をDとするとき,次のものを求めよ。 △ABCの面積と線分ADの長さ この問題が分かりません。 教えてください! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 中学数学の幾何の問題です。 中学数学の問題ですが、全く手が出ず困っています。 ヒントだけでもうれしいです。どなたか宜しくお願いします。 「∠ACB=90°、AC=ABの直角二等辺三角形ABCがある。 辺AB上に、AD=ACとなる点Dをとり、点Dと点Cを結ぶ。 点Aを通り、線分DCに垂直な直線を引き、線分DC、辺BCとの交点をそれぞれE,Fとする。 このとき、 DB=CFであることを証明せよ。」 中学数学の問題です。 比が出てくるとよくわからなくなります。教えてほしいです。 AD<AE、AD:EB=1:2 、DF//AC、EF//BCです。 (1)AD=1cmのとき三角形ABCから三角形DEFを除いた部分の図形の面積を求めよ。 (2)三角形ABCから三角形DEFを除いた残りの部分の図形の面積が、三角形ABCの面積の36%であるとき、線分ADの長さを求めよ。 どうぞお願いします。 数学を教えてください AB=6,BC=5.CA=4であるとき△ABCにおいて∠Aの二等分線と辺BCの交点をPとしたとき線分BPと線分APの長さを求めなさい。 答えBP=3、AP=3√2 この問題の途中式を教えてください。ちなみにcos∠B=3/4、△ABCの面積S=15√7/4、△ABCの内接円の半径r=√7/2です 中学の数学です △ABCにおいて、∠Aの二等分線と辺BCとの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8cm BC=7cm CA=6cmのとき、DEの長さを求めよ。 解説にBE:CE=AB:AC=4:3とあるのですが、その理由がわかりません! わかる方詳しい解説をお願いします。 数学の面積を求める問題です。 図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。) 図形の証明問題です。 どなたか回答おねがいします。 △ABCは鋭角三角形とする。∠ABCの二等分線と辺ACとの交点をDとし、Dから辺BCに垂線をひき、その交点をEとする。Eから辺ABに垂線をひき、BD,ABとの交点をそれぞれF,Gとする、このときED=EFであることを証明せよ です。おねがいします。 数学の問題です。 △ABCにおいてAB=4、AC=3、∠BAC=60度とする。また△ABCの外接円をT、その中心をOとするとき以下の問いに答えよ。 (1)BCの長さを求めよ。 答えは √13 (2)外接円Tの半径を求めよ 答えは √39/3 (3)△ABCの面積を求めよ 答えは 3√3 さらに、外接円Tの点B、点Cにおける接線の交点をDとおき、線分ADと線分BCとの交点をEとおく。 (4)∠BOCおよび∠BDCを求めよ。 答えは ∠BOC=120度 ∠BDC=60度 (5)BDの長さを求めよ。 答えは √13 (6)AE:EDを簡単な整数比で求めよ。 答えは 12:13 途中式を教えてほしいです・・・よろしくお願いします 中学生のこの問題の解きかたお教えください。 AB=3cm、BC=4cm、CAが2cmの△ABCと<BACの二等分線lがある。点B,Cから直線lに垂線をひき、それぞれの交点をD,Eとする。また直線lがBCおよび△ABCの外接円と交わる点をそれぞれF,Gとする。 AFの長さを求めなさい。 答えは3√6÷5です。 子供に教えたいのでよろしくお願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
これでやってみます! ありがとうございました。