ベストアンサー y=aでのf(x)=yとg(x)=aとの交点の 2012/11/27 21:22 x座標はy-a=0の解のx座標と同じになる。接点のx座標がbならy-aは(x-b)^2でくくれる。 っていえるんですか? みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー muturajcp ベストアンサー率77% (511/658) 2012/12/01 05:31 回答No.1 x≠0のときf(x)=e^{-1/x^2} f(0)=0 とfを定義する f'(0)=0 だから y=0とy=f(x)との接点は(0,0)だけれども f(x)はx^2でくくれません 質問者 お礼 2012/12/02 01:49 ありがとうございます。 f(x)=e^{-1/x^2}ってなんの関数ですか? 数III・Cは教科書すらやってないです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) muturajcp ベストアンサー率77% (511/658) 2012/12/03 05:38 回答No.2 #1を訂正します f(x)=x|x| とする f'(0)=0 で y=0とy=f(x)との接点は(0,0) だが f(x)=(x^2)h(x) となるhがあるとすると x>0のときh(x)=1 x<0のときh(x)=-1 h(x)はx=0で不連続となるから f(x)=(x^2)h(x) となる連続関数hは存在しない 質問者 お礼 2012/12/03 06:25 ありがとうございます。 連続とかは数IIIに出てくるみたいです。 質問の内容は言えないってことなんですか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A y=f(x)とy=f^-1(x)との交点 y=x y=f(x)とy=f^-1(x)との交点が2つ存在し、その交点のx座標の差が10であるとき、y=f(x)やf-1(x)とy=xとの交点のx座標の差も10でしょうか? 楕円:(X^2/a^2)+(Y^2/b^2)=1 楕円:(X^2/a^2)+(Y^2/b^2)=1 において、接線とY軸の成す角θです。 このとき、楕円と接線の接点の座標が点P(p,q)の場合、a,bを用いずにqを表すことは不可能でしょうか? 無理関数 y = √(2x+1) と直線 y = x-1 の交点の座標 無理関数 y = √(2x+1) と直線 y = x-1 の交点の座標を求めよ 解答 無理関数 y = √(2x+1) の定義域は x >= -1/2, 値域は y >= 0 である √(2x+1) = x-1 の両辺を2乗すると、 2x+1 = (x-1)^2 x^2 - 4x = 0 x(x-4) = 0 x = 0,4 無理関数の値域を考えると、この方程式の解は x = 4 だけとなる。よって、交点の座標は (4,3). となっているのですが 定義域と値域はどのようにしてもとめるのですか。 また、 無理関数の値域を考えると、この方程式の解は x = 4 だけとなる.とありますが、 x = 0,4 を y = √(2x+1) に当てはめて、値域 y >= 0 であればいいのですか。この場合、どちらもいいように思うのですが、どうなんでしょうか。 よくわからないので、よろしくお願いします。 最後に、この問題とは関係ないんですが、√0 = 0 ですか。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 楕円(x/a)^2 + (y/b)^2 (a>b>0)の接線が両座標軸によって切り取られる線分の長さを求めよ 接線とy軸の交点をA、x軸との交点をB、接点を(x1,y1)としたとき、AB^2={(a^2/x1)^2 + (b^2/y1)^2}*1={(a^2/x1)^2 + (b^2/y1)^2}*{(x1/a)^2 + (y1/b)^2}≧(a+b)^2(∵コーシーシュワルツの不等式) minAB=a+b となるのは分かったのですが、解答にはコーシーシュワルツの不等式)とよってminAB=の間に よって(a^2/x1,b^2/y1)//(x1/a,y1/b)のとき という一文が追加されているのです そもそも点の座標が平行の意味が分かりませんし、調べてみましたがコーシーシュワルツの不等式にこのような条件はありませんでした これは何なのでしょうか? f(x,y)=(2x+3y-2)(x+4y+1)が f(x,y)=(2x+3y-2)(x+4y+1)が前提で、 f(x,y)=56を満たす自然数x,yの組を求めるとき、 「56=7×8, 14×4, 28×2, 56×1 2x+3y-2=a,x+4y+1=bとすると、 2b-a=5y+4 (a,b)=(7,8)のみ満たす。 よって(a,b)=(7,8)のときx=3,y=1」 という解答があったのですが、 何をしているのかまったくわかりません。 特に、=a, =bとした式を足した理由や、 「(a,b)=(7,8)のみ満たす」というのがどこから 導き出されたものなのかよくわかりません。 わかる方、解説をお願いしたいです。 数字や記号の打ち間違えがあったらすみません。 図のように、直線y=1/2x+a(a>0)が直線y=2xと交わる点をA 図のように、直線y=1/2x+a(a>0)が直線y=2xと交わる点をA、x軸、y軸と交わる点をそれぞれB、Cとするとき、点Aのy座標が12のとき、線分BOの長さを求めなさい。ただし、座標の1メモリを1cmとする。 という問題です。教えてください。 -6=x+y -6=x+y 96=(b-a)^2 の解a,bを求めてください。 お願いします。 ■y=x^2 と x=a の接点が無いことの証明■ y=x^2とx=a(aは実数)の接点(交点ではない)が無いことの証明は どのようにすべきでしょうか? 微分すれば傾きは2xであり、x=aでの傾きが2a≠tan90°であるので、 傾きとx=aは平行でないので接しない。よって、接点は無い。 とできそうですが、微分を使わずに綺麗に証明できないものでしょうか? 例えば、y=x^2とy=bの交点は前者に後者を代入すればすぐにx=±√b と出せますよね。そんな簡単さを求めています。 以上、変な質問ですがよろしくお願いします。 交点のY座標の求め方 あくまでも例です。Y=X^3-X^2+5XとY=MXとの原点以外の交点のX座標はX^3-X^2+5X=MXから、X≠0で割ったX^2-X+5=M…(*)の解ですが、その点は2つのグラフY=X^2-X+5とY=Mの交点に一般的には一致しますか? (*)の解の1つをpとしたら交点の1つは、Y=MX上なのでP(p,Mp)と書けます。しかし(*)からはそんなことは言えませんよね。なら上の質問の答えは一致しない ですか? 基本的なことですみません。教えてください y=x^3+ax^2+x+1が極値を持つa範囲 y=x^3+ax^2+x+1が極値を持つのはaの値の範囲がどのような時か? 解いてみると y=x^3+ax^2+x+1が極値を持つ条件は,2次関数y’=3x^2+2ax+1の符号が変わる実数xがあることが条件ですから,D>0です D/4=a^2-3>0 で a<-√3, √3>aになります ここで質問なのですが,y’=3x^2+2ax+1の符号が変わる実数xとありますが、なぜ実数なのですか? 異なる2つの虚数解ではダメな理由はなんでしょうか まあy=ax^2+bx+cの頂点が(-b/2a,-D/4a)よりD<0だからy座標-D/4aがx軸と交点を持たないのは明らかだからD<0ではだめなのは分かります。 しかしax^2+bx+c=0となる異なる2つの虚数解はあるわけで,この虚数解は符号が変わる虚数xにはならないのでしょうか? すいませんが今の高校では複素数,虚数,共役複素数は習いますが、複素数平面などは習わないので虚軸とかも全くわかりません 虚数というのも 教科書にはb≠0である複素数a+biを;虚数という と書いてるくらいなのでよく分からないです 一応wikiとかで調べましたが y = x^2 と y=f(x)=x^2の違い 自分の使っている参考書の 2次関数の基本形のグラフを調べよう というページの解説で 一般に2次関数はy=ax^2+bx+c(a≠0)の形で表されるんだけれど 今回はb=0、c=0とした最も単純なy=ax^2の形の2次関数についても考えてみよう。 このy=ax^2(a≠0)が2次関数の基本となるものだから特にこれを2次関数の基本形と呼ぶよ。 それでは、y=ax^2でa=1のときのもの、つまりy=x^2をy=f(x)=x^2とおいて、そのグラフをxy座標平面上の描いてみることにしよう。 と書かれているのですが y=x^2をy=f(x)=x^2とおいて の部分の意味がわかりません。 y=x^2とy=f(x)=x^2は同じもののように思うのですが 何のために y=x^2はy=f(x)=x^2とおく必要があるのでしょうか? 放物線 (x-y)^2-2(x+y)+1=0 の直交する二接線の交点の 放物線 (x-y)^2-2(x+y)+1=0 の直交する二接線の交点の軌跡を以下の方針で求めよ。 (a)傾きmの接線を求めよ。 (b)傾き-1/mの接線を求めよ。 (c) (a),(b)の交点を求め、その軌跡を求めよ。 という問題なのですが、接点が与えられていないので接線を具体的に求めることはできないのかなぁ と思ったのですが、この考えは間違ってますかね? もしできるなら、そのやり方を教えていただきたいです。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム y´´+y´=e^x+x^2の特殊解ですが… 回答者の皆様、お世話になります。 y´´+y´=e^x+x^2の特殊解ですが… 以前、この掲示板で教えて頂いた右辺を分ける考え方でいきます。 y´´+y´=x^2として、 y=ax^2+bx+c y´=2ax+b y´´=2a ∴y´´+y´=2ax+b+2aと上手く、x^2の項が作れません。 そこで、 y´=ax^2+bx+cとして、y´´=2ax+b ∴y´´+y´=2ax+b+ax^2+bx+c =(a)x^2+(2a+b)x+(b+c)=x^2 係数よりa=1、b=-2、c=2 ∴y´=x^2-2x+2 ∫dy=∫(x^2-2x+2) dx y=x^3/3-x^2+2x と考えていいのでしょうか? 続けまして、y´´+y´=e^xとして、 y=ae^x, y´=ae^x, y´´=ae^x ∴y´´+y´=2ae^x=e^x 係数より2a=1, a=1/2 y=(1/2)e^x これらを合わせて特殊解は y=(1/2)e^x+x^3/3-x^2+2x で問題はないでしょうか?ご指導願います。 y=-2x+2 y=-2x-2 ⇔ y=-2x±2 ??? ◆ y=-2x+2 y=-2x-2 と y=-2x±2 は、 大学入試における数学の答えとして”100%”等しいでしょうか? なぜこんなつまらない質問をしたかといいますと、 一つにまとめた時に何かしらの規則が働くのかと思ったからです。 ◆ 上の関係は(100%等しいと仮定したとき)、 AかつB ⇔ C AまたはB ⇔ C の二つから選んだとき、 前者だと、-2x+2=-2x-2 を解かねばならず答えは解なしだから、 後者の”または”が正しいと思うのですがどうでしょうか? あるいは、このような関係の時には、⇔ ⇒などは使わないものでしょうか? ◆ ちなみに問題は、 曲線y=x^3上の点(1/2、1/8)における、曲線の方程式を求めよ。 という、ごくごくかんたんなものです。 y=x2-4x+2 と y=x+aがたった一つの解を持つ場合、aの値を y=x2-4x+2 と y=x+aがたった一つの解を持つ場合、aの値を求めよ。 これどうやって解くんですか? 判別式使うのわかるけど 点(7,1)を通り、円x^2+y^2=25に接する 点(7,1)を通り、円x^2+y^2=25に接する直線は、(ア)x+(イ)y=25、(ウ)x-(エ)y=25となり、接点の座標はx座標の小さい方からそれぞれ(オ)、(カ)である。 また、この2つの接点 と点(7,1)を通る円の方程式は(x-□)^2+(y-□)^2=□である。 この問題教えてください! x^2+(y-a)^2=4000^2の解は。 x^2+(y-a)^2=4000^2についてaの解をお求めください。 x^2+4y^2=1 の解について x^2+4y^2=1 をみたす共に有理数のx,yがある。解(x,y)は無数にあることを示せ。 x=a/b,y=p/q とおいて、式を変形して、その式が無数の整数解をもつことを示す方針で考えていますが、その無数に解をもつ方程式がどんな形にこの場合なるのか、行き詰まっています。ポイントとなるところについてアドバイス、ヒントがあればと思います。 【問題】放物線C:y=x^2+ax+bの頂点は放物線y=3x^2+4x 【問題】放物線C:y=x^2+ax+bの頂点は放物線y=3x^2+4x-1上にある。 (1)a,bの間になりつ立つ関係式を求めよ。 (2)Cとx軸との2交点のx座標x1,x2がともに整数であるとき,a,bの組をすべて求めよ。 (1)は条件より,b=a^2-2a-1と求められました。 (2)についてなのですが,(1)の結果から放物線C:y=x^2+ax+a^2-2a-1と表すところまでやってみたのですが,そっからがわかりません^^;解と係数の関係を使うことも考えてみたのですがどう使っていいのかわかりません^^; どなたかよろしくお願いします。 sup | f (x)-f (y) | について sup | f (x)-f (y) | についての質問です。 今、ある閉区間で f は定義されているものとし、この区間で有界とします。 A = sup {f (x)} 、B = inf {f(x)} とおきます。 このとき、教科書によると sup | f (x)-f (y) | = A - B になるそうです。 しかし、以下の理由から私は sup ( f (x)-f (y) ) = A - B になるように思います。 ・A - B が( f (x)-f (y) ) の上界になる事 任意に f (x) 、f (y) をとります。 このときA、Bの定義から f (x) ≤ A 、-f (y) ≤ -B となります。 したがって f (x) - f (y) ≤ A-B となり、A - B は( f (x)-f (y) ) の上界になります。 ・A - B が( f (x)-f (y) ) の最小上界である事 任意に正の数2εをとります。 (εだと以下やりにくいため2εとしました) A - B -2ε < f (x)-f (y) となる f (x) 、f (y) を見つければOKです。 A - B -2ε= (A-ε) - (B+ε) と変形すると、A、Bの定義から A-ε < f (x) 、 -(B+ε) < -f (y) となる f (x) 、f (y) がとれます。 したがって両辺を足してA - B -2ε < f (x)-f (y) となります。 この証明が正しければ sup ( f (x)-f (y) ) = A - B となりますが、すると sup ( f (x)-f (y) ) = sup | f (x)-f (y) | となりますが、これは正しいのでしょうか? 今のところ反例が思いつかないので、正しいのか分からないのですが、 わざわざ絶対値をつけているため、この式は成り立たないように思うのですが… 私の考えで間違っているところがあれば教えて頂きたいです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。 f(x)=e^{-1/x^2}ってなんの関数ですか? 数III・Cは教科書すらやってないです。